The enzyme subclass of glycosyltransferases (GTs; EC 2.4) currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides, and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition GTs also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial GTs show a higher sequence similarity in comparison to mammalian ones. Even when most GTs are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial GTs, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.
Microbial polysaccharides have a wide range of functional properties and show high relevance in industrial applications. The possibility to create tailor-made polysaccharides by genetic engineering will further enhance the product portfolio and may open new fields of application. Here, we have examined in detail the recently sequenced genome of the welan-producing strain Sphingomonas sp. ATCC 31555 to identify the complete welan cluster and further genes involved in EPS production. The corresponding genes were compared on the nucleotide and amino acid sequence level to the EPS clusters of the described gellan-producing Sphingomonas elodea ATCC 31461, diutan-producing Sphingomonas sp. ATCC 53159, and the S-88-producing Sphingomonas sp. ATCC 31554 strains. We also compared the previously mentioned strains to each other and included the genes upstream of the main cluster in gellan and welan cluster. The cluster organization of Sphingomonas strain S-7 was also compared based on previous hybridization experiments, without nucleotide sequences. We have found that the occurrence of genes in all biosynthesis clusters is connected to the structures of the various produced sphingans. Along these lines, homologous genes responsible for the assembly of the identical repeating unit generally show high sequence identity, whereas genes for putative side chain attachment urf31, urf31.4, and urf34 vary more in distinct areas. Moreover, gene clusters for biosynthesis of diutan, welan, gellan, and S-88 as well as S-7 are similar in general organization but differ in location and arrangement of some genes. Finally, we summarized genetic and mutational engineering approaches toward modified sphingan variants as described in literature.
Four alginates possessing different guluronic/mannuronic acid ratios and one acetylated alginate were investigated with respect to their behaviour during intercalation into layered double hydroxides (LDHs). Two alginates were commercial products while the others were synthesised by way of bacterial fermentation and in one sample followed by enzymatic treatment. Intercalation was performed by way of co-precipitation of aluminium nitrate and zinc nitrate in alginate solution at a pH of 8·5–9. The products were characterised by powder X-ray diffraction, elemental analysis, wide-angle X-ray scattering, scanning electron microscopy and magic angle spinning (MAS) NMR spectroscopy. All alginates intercalate well into the Zn2Al-LDH host structure. With an increase in the content of guluronic acid in the alginate, the d-spacing (interlayer distance) in the alginate-LDH compound increases from 1·28 to 1·85 nm. Similarly, acetylation of the carboxylic groups leads to an increased steric volume of such alginate and therefore to a higher d-spacing (1·72 nm). The results indicate that different guluronic/mannuronic acid ratios can be used to trigger the steric size of the alginates and consequently the d-spacing of the alginate-LDHs. 13C CP MAS NMR spectroscopy confirmed an interaction between the carboxylic groups present in the alginate with the inorganic main layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.