In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level.
CD8+ T cells are key players during infection with the malaria parasite Plasmodium berghei ANKA (PbA). While they cannot provide protection against blood-stage parasites, they can cause immunopathology, thus leading to the severe manifestation of cerebral malaria. Hence, the tight control of CD8+ T cell function is key in order to prevent fatal outcomes. One major mechanism to control CD8+ T cell activation, proliferation and effector function is the integration of co-inhibitory and co-stimulatory signals. In this study, we show that one such pathway, the HVEM-CD160 axis, significantly impacts CD8+ T cell regulation and thereby the incidence of cerebral malaria. Here, we show that the co-stimulatory molecule HVEM is indeed required to maintain CD8+ T effector populations during infection. Additionally, by generating a CD160−/− mouse line, we observe that the HVEM ligand CD160 counterbalances stimulatory signals in highly activated and cytotoxic CD8+ T effector cells, thereby restricting immunopathology. Importantly, CD160 is also induced on cytotoxic CD8+ T cells during acute Plasmodium falciparum malaria in humans. In conclusion, CD160 is specifically expressed on highly activated CD8+ T effector cells that are harmful during the blood-stage of malaria.
Despite being one of the most fundamental biological processes, the process of speciation remains poorly understood in many groups of organisms. Mouse lemurs are a species-rich genus of small primates endemic to Madagascar, whose diversity has only recently been uncovered using genetic data and is primarily found among morphologically cryptic, allopatric populations. To assess to what extent described species represent reproductively isolated entities, studies are needed in areas where mouse lemur taxa come into contact. Hybridization has previously been reported in a contact zone between two closely related mouse lemur species (Microcebus murinus and M. griseorufus) based on microsatellite data. Here, we revisit this system using RADseq data for populations in, near, and far from the contact zone, including many of the individuals that had previously been identified as hybrids. Surprisingly, we find no evidence for admixed nuclear ancestry in any of the individuals. Re-analyses of microsatellite data and simulations suggest that previously inferred hybrids were false positives and that the program NewHybrids can be particularly sensitive to erroneously inferring hybrid ancestry. Using coalescent-bases analyses, we also show an overall lack of recent gene flow between the two species, and low levels of ancestral gene flow. Combined with evidence for local syntopic occurrence, these data indicate that M. murinus and M. griseorufus are reproductively isolated. Finally, we estimate that they diverged less than a million years ago, suggesting that completion of speciation is relatively rapid in mouse lemurs. Future work should focus on the underpinnings of reproductive isolation in this cryptic primate radiation, which are mostly unknown. Our study also provides a cautionary tale for the inference of hybridization with microsatellite data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.