Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
Background: One undisputed benefit of digital support is the possibility of contact reduction, which has become particularly important in the context of the COVID-19 pandemic. However, to the best of our knowledge, there is currently no study assessing the Europe-wide use of digital online pre-operative patient information or evaluation in the health sector. The aim of this study was to give an overview of the current status in Europe. Methods: A web-based questionnaire covering the informed consent process was sent to members of the European Society of Anaesthesia and Intensive Care Medicine (ESAIC) in 47 European countries (42,433 recipients/930 responses). Six questions related specifically to the practice in paediatrics. Results: A total of 70.2% of the respondents indicated that it was not possible to obtain informed consent via the Internet in a routine setting, and 67.3% expressed that they did not know whether it is in line with the legal regulations. In paediatric anaesthesia, the informed consent of only one parent was reported to be sufficient by 77.6% of the respondents for simple interventions and by 63.8% for complex interventions. Just over 50% of the respondents judged that proof of identity of the parents was necessary, but only 29.9% stated that they ask for it in clinical routine. In the current situation, 77.9% would favour informed consent in person, whereas 60.2% could imagine using online or telephone interviews as an alternative to a face-to-face meeting if regulations were changed. Only 18.7% participants reported a change in the regulations due to the current pandemic situation. Conclusion: Whether informed consent is obtained either online or on the telephone in the paediatric population varies widely across Europe and is not currently implemented as standard practice. For high-risk patients, such as the specific cohort of children with congenital heart defects, wider use of telemedicine might provide a benefit in the future in terms of reduced contact and reduced exposure to health risks through additional hospital stays.
Background: Central venous catheters (CVC) are commonly required for pediatric congenital cardiac surgeries. The current standard for verification of CVC positioning following perioperative insertion is postsurgical radiography. However, incorrect positioning may induce serious complications, including pleural and pericardial effusion, arrhythmias, valvular damage, or incorrect drug release, and point of care diagnostic may prevent these serious consequences. Furthermore, pediatric patients with congenital heart disease receive various radiological procedures. Although relatively low, radiation exposure accumulates over the lifetime, potentially reaching high carcinogenic values in pediatric patients with chronic disease, and therefore needs to be limited. We hypothesized that correct CVC positioning in pediatric patients can be performed quickly and safely by point-of-care ultrasound diagnostic. Methods: We evaluated a point-of-care ultrasound protocol, consistent with the combination of parasternal craniocaudal, parasternal transversal, suprasternal notch, and subcostal probe positions, to verify tip positioning in any of the evaluated views at initial CVC placement in pediatric patients undergoing cardiothoracic surgery for congenital heart disease. Results: Using the combination of the four views, the CVC tip could be identified and positioned in 25 of 27 examinations (92.6%). Correct positioning was confirmed via chest X-ray after the surgery in all cases. Conclusions: In pediatric cardiac patients, point-of-care ultrasound diagnostic may be effective to confirm CVC positioning following initial placement and to reduce radiation exposure.
Background: The validity of current tools for intraoperative objective assessment of nociception/antinociception balance during anesthesia in young and very young surgery children is unknown. Aim: Primary aim of the study was to test the hypothesis that the Newborn Infant Parasympathetic Evaluation (NIPE) index performs better in indicating nociception in anesthetized children below 2 years than changes in heart rate. Secondary aims were to evaluate associations between intraoperative changes in NIPE index values and postoperative pain and emergence delirium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.