Genotyping proved its practicability in the daily routine setting and qualitatively outperformed serology. Technology is ideal for time-insensitive donor genotyping and allows for a broad range of throughput needs. Consequently, from a technologic point of view, serotyping should be replaced by genotyping for donors' blood groups encoded by KEL, SLC14A1, and DARC.
Most blood group antigens are defined by single nucleotide polymorphisms (SNPs). Highly accurate MALDI-TOF MS has proven its potential in SNP genotyping and was therefore chosen for blood donor oriented genotyping with high-throughput capability, e.g., 380 samples per day. The Select Module covers a total of 36 SNPs in two single-tube reactions, representative of 46 blood group and 4 human platelet antigens. Using this tool, confirmatory blood group typing for RhD, RhCE, Kell, Kidd, Duffy, MN, Ss, and selected rare antigens is performed on a routine basis.
The U antigen (MNS5) is one of 49 antigens belonging to the MNS blood group system (ISBT002) carried on glycophorins A (GPA) and B (GPB). U is present on the red blood cells in almost all Europeans and Asians but absent in approximately 1.0% of Black Africans. U negativity coincides with negativity for S (MNS3) and s (MNS4) on GPB, thus be called S-s-U-, and is thought to arise from homozygous deletion of GYPB. Little is known about the molecular background of these deletions. Bioinformatic analysis of the 1000 Genomes Project data revealed several candidate regions with apparent deletions in GYPB. Highly specific Gap-PCRs, only resulting in positive amplification from DNAs with deletions present, allowed for the exact genetic localization of 3 different breakpoints; 110.24-and 103.26-kb deletions were proven to be the most frequent in Black Americans and Africans. Among 157 CEPH DNAs, deletions in 6 out of 8 African ethnicities were present. Allele frequencies of the deletions within African ethnicities varied greatly and reached a cumulative 23.3% among the Mbuti Pygmy people from the Congo. Similar observations were made for U+ var alleles, known to cause strongly reduced GPB expression. The 110-and 103-kb deletional GYPB haplotypes were found to represent the most prevalent hereditary factors causative of the MNS blood group phenotype S-s-U-. Respective GYPB deletions are now accessible by molecular detection of homo-and hemizygous transmission.
In the era of blood group genomics, reference collections of complete and fully-resolved blood group gene alleles have gained high importance. For most blood groups, however, such collections are currently lacking, as resolving full-length gene sequences as haplotypes (i.e. separated maternal/paternal origin) remains exceedingly difficult with both Sanger and short-read next-generation sequencing. Using latest third-generation long-read sequencing, we generated a collection of fully-resolved sequences for all six main ABO allele groups: ABO*A1/A2/B/O.01.01/O.01.02/O.02. We selected 77 samples from an ABO genotype dataset (n=25,200) of serologically-typed Swiss blood donors. The entire ABO gene was amplified in two overlapping long-range PCRs (covering ~23.6 kb) and sequenced by long-read Oxford Nanopore sequencing. For quality validation, two samples per ABO group were re-sequenced using Illumina and PacBio technology. All 154 full-length ABO sequences were resolved as haplotypes. We observed novel, distinct sequence patterns for each ABO group. Most genetic diversity was found between, not within, ABO groups. Phylogenetic tree and haplotype network analyses highlighted distinct clades of each ABO group. Strikingly, our data uncovered four genetic variants putatively specific for ABO*A1, for which direct diagnostic targets are currently lacking. We validated A1-diagnostic potential using whole-genome data (n=4,872) of a multi-ethnic cohort. Overall, our sequencing strategy proved powerful for producing high-quality ABO haplotypes and holds promise for generating similar collections for other blood groups. The publicly available collection of 154 haplotypes will serve as a valuable resource for molecular analyses of ABO, as well as studies about function and evolutionary history of ABO.
Results of genotyping with true high-throughput capability for MNSs antigens are underrepresented, probably because of technical issues, due to the high level of nucleotide sequence homology of the paralogous genes GYPA, GYPB and GYPE. Eight MNSs-specific single nucleotide polymorphisms (SNP) were detected using matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS) in 5800 serologically M/N and S/s pre-typed Swiss blood donors and 50 individuals of known or presumptive black African ethnicity. Comparison of serotype with genotype delivered concordance rates of 99·70% and 99·90% and accuracy of genotyping alone of 99·88% and 99·95%, for M/N and S/s, respectively. The area under the curve of peak signals was measured in intron 1 of the two highly homologous genes GYPB and GYPE and allowed for gene copy number variation estimates in all individuals investigated. Elevated GYPB:GYPE ratios accumulated in several carriers of two newly observed GYP*401 variants, termed type G and H, both encoding for the low incidence antigen St(a). In black Africans, reduced GYPB gene contents were proven in pre-typed S-s-U- phenotypes and could be reproduced in unknown specimens. Quantitative gene copy number estimates represented a highly attractive supplement to conventional genotyping, solely based on MNSs SNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.