Recently, the coffee constituents 5-O-caffeoylquinic acid (CGA) and N-methylpyridinium (NMP) were identified as inducers of the Nrf2/antioxidant-response element (ARE) detoxifying pathway under cell-culture condition. To study the impact of CGA and NMP on the Nrf2-activating properties of a complex coffee beverage, two different model coffees were generated by variation of the roasting conditions: a low-roast coffee rich in CGA and a heavy-roast low in CGA but containing high levels of NMP. Activation of the Nrf2/antioxidant-response element pathway was monitored in vitro and in vivo.
This study investigated Nrf2-activating properties of a coffee blend combining raw coffee bean constituents with 5-O-caffeoylquinic acid (CGA) as a lead component with typical roasting products such as N-methylpyridinium (NMP). In cell culture (HT29) the respective coffee extract (CN-CE) increased nuclear Nrf2 translocation and enhanced the transcription of ARE-dependent genes as exemplified for NAD(P)H:quinone oxidoreductase and glutathione-S-transferase (GST)A1, reflected in the protein level by an increase in GST enzyme activity. In a pilot human intervention study (29 healthy volunteers), daily consumption of 750 mL of CN-coffee for 4 weeks increased Nrf2 transcription in peripheral blood lymphocytes on average. However, the transcriptional response pattern of Nrf2/ARE-dependent genes showed substantial interindividual variations. The presence of SNPs in the Nrf2-promoter, reported recently, as well as the detection of GSTT1*0 (null) genotypes in the study collective strengthens the hypothesis that coffee acts as a modulator of Nrf2-dependent gene response in humans, but genetic polymorphisms play an important role in the individual response pattern.
The Nrf2/ARE pathway is a major cellular defense mechanism that prevents damage by reactive oxygen species through induction of antioxidative phase II enzymes. However, the activity of the Nrf2/ARE system is not uniform with variability in response presumed to be dependent on the Nrf2 genotype. We recently completed a pilot human coffee intervention trial with healthy humans, where large interindividual differences in the antioxidative response to the study coffee were examined. Here, we address the question whether differences in the modulation of Nrf2 gene transcription, assessed as an induction of Nrf2 gene transcription by Q-PCR, might be correlated with specific Nrf2 genotypes. To date, nine single nucleotide polymorphisms (SNPs) have been identified in the Nrf2 (NFE2L2) gene. Two of these, the -617C/A and -651G/A SNPs are located within the promoter region and have previously been reported to influence the activity of the Nrf2/ARE pathway by reducing Nrf2 transcriptional activity. Sequencing of the critical Nrf2 gene promoter region not only confirmed the existence of these SNPs within the participants of the trial at the expected frequency (33% carrying the -617C/A, 17% the -651G/A and 56% the -653A/G SNP) but also indicated reduced Nrf2 gene transcription associated with a normal diet if the SNPs at position -617, -651 or -653 were present. Of note, the data also indicated the study coffee increased Nrf2 gene transcription even in SNP carriers. This further highlights the relevance of genotype-dependent induction of Nrf2 gene transcription that appears to be largely influenced by dietary factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.