Depleting copper resources and advancing technologies have challenged industries to develop more viable, adaptable and cost efficient processes using also secondary raw materials in copper production. This study is targeting to that goal by dynamic modelling of flow and heat transfer coupled with chemical kinetics in an industrial scale flash smelting furnace settler using commercial CFD software ANSYS Fluent. First, different physical phenomena occurring inside the settler, for example, settling and separation of the matte/slag phases, and heat transfer between slag/matte phases and settler walls are studied. Secondly, reaction kinetics between matte and slag, and between slag/matte and settler walls, and impurity element distribution will be studied. This would also include phase changes phenomena due to these reactions and the flow of the reaction gases inside the settler. Settling of polydispersed droplets, their coagulation, breakage, and WEEE particle behavior are further targets of the modelling work.
Computational methods have become reliable tools in many disciplines for research and industrial design. There are, however, an ever-increasing number of details waiting to be included in the models and software, including, e.g., chemical reactions and many physical phenomena, such as particle and droplet behavior and their interactions. The dominant method for copper production, flash smelting, has been extensively investigated, but the settler part of the furnace containing molten high temperature melts termed slag and matte, still lacks a computational modeling tool. In this paper, two commercial modeling software programs have been used for simulating slag-matte interactions in the settler, the target being first to develop a robust computational fluid dynamics (CFD) model and, second, to apply a new approach for molten droplet behavior in a continuum. The latter is based on CFD coupled with the discrete element method (DEM), which was originally developed for modeling solid particle-particle interactions and movement, and is applied here for individual droplets for the first time. The results suggest distinct settling flow phenomena and the significance of droplet coalescence for settling velocity and efficiency. The computing capacity requirement for both approaches is the main limiting factor preventing full-scale geometry modeling with detailed droplet interactions.
A mathematical modeling approach was used to test different design modifications in a flash smelting settler to reduce the copper losses in slag, which is economically disadvantageous for copper processing using the pyrometallurgical route. The main purpose of this study was to find ways to reduce copper losses in slag by improving the settling and coalescence of copper matte droplets, in particular, the smallest droplet sizes of ≤100 µm. These improvements inside the flash smelting (FS) settler were targeted through different settler design modifications. Three different design schemes were tested using the commercial computational fluid dynamics (CFD) software, Ansys Fluent. These settler design modification schemes included the impact of various baffle types, positioning, the height inside the settler, and settler bottom inclinations. Simulations were carried out with and without coalescence and the results were compared with normal settler design. The results revealed that the settling phenomenon and coalescence efficiency were improved significantly with these design modifications. It was concluded that a single baffle design was optimal for reducing copper losses and increasing coalescence efficiency instead of using multiple baffle arrangements. The top-mounted baffle outperformed the bottom-mounted baffle and inclined settler design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.