SUMMARY
The shelterin protein protects telomeres against activation of the DNA damage checkpoint and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ~90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.
Telomeric repeat binding factor 2 (TRF2), which plays a central role in telomere capping, is frequently increased in human tumors. We reveal here that TRF2 is expressed in the vasculature of most human cancer types, where it colocalizes with the Wilms' tumor suppressor WT1. We further show that TRF2 is a transcriptional target of WT1 and is required for proliferation, migration, and tube formation of endothelial cells. These angiogenic effects of TRF2 are uncoupled from its function in telomere capping. Instead, TRF2 binds and transactivates the promoter of the angiogenic tyrosine kinase platelet-derived growth factor receptor β (PDGFRβ). These findings reveal an unexpected role of TRF2 in neoangiogenesis and delineate a distinct function of TRF2 as a transcriptional regulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.