Advancements in the AI field unfold tremendous opportunities for society. Simultaneously, it becomes increasingly important to address emerging ramifications. Thereby, the focus is often set on ethical and safe design forestalling unintentional failures. However, cybersecurity-oriented approaches to AI safety additionally consider instantiations of intentional malice -including unethical malevolent AI design. Recently, an analogous emphasis on malicious actors has been expressed regarding security and safety for virtual reality (VR). In this vein, while the intersection of AI and VR (AIVR) offers a wide array of beneficial cross-fertilization possibilities, it is responsible to anticipate future malicious AIVR design from the onset on given the potential socio-psycho-technological impacts. For a simplified illustration, this paper analyzes the conceivable use case of Generative AI (here deepfake techniques) utilized for disinformation in immersive journalism. In our view, defenses against such future AIVR safety risks related to falsehood in immersive settings should be transdisciplinarily conceived from an immersive co-creation stance. As a first step, we motivate a cybersecurity-oriented procedure to generate defenses via immersive design fictions. Overall, there may be no panacea but updatable transdisciplinary tools including AIVR itself could be used to incrementally defend against malicious actors in AIVR.
The complex socio-technological debate underlying safetycritical and ethically relevant issues pertaining to AI development and deployment extends across heterogeneous research subfields and involves in part conflicting positions. In this context, it seems expedient to generate a minimalistic joint transdisciplinary basis disambiguating the references to specific subtypes of AI properties and risks for an errorcorrection in the transmission of ideas. In this paper, we introduce a highlevel transdisciplinary system clustering of ethical distinction between antithetical clusters of Type I and Type II systems which extends a cybersecurity-oriented AI safety taxonomy with considerations from psychology. Moreover, we review relevant Type I AI risks, reflect upon possible epistemological origins of hypothetical Type II AI from a cognitive sciences perspective and discuss the related human moral perception. Strikingly, our nuanced transdisciplinary analysis yields the figurative formulation of the so-called AI safety paradox identifying AI control and value alignment as conjugate requirements in AI safety. Against this backdrop, we craft versatile multidisciplinary recommendations with ethical dimensions tailored to Type II AI safety. Overall, we suggest proactive and importantly corrective instead of prohibitive methods as common basis for both Type I and Type II AI safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.