Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties. Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for 1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their molecular and biochemical changes. We found that waterlogging treatment induced the formation of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant activities, hydrogen peroxide, and malondialdehyde contents of the waterlogged bananas increased in response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress, we analyzed the transcriptome changes of banana roots. A total of 3508 unigenes were differentially expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into the complex molecular events of bananas in response to waterlogging stress, which could later help develop waterlogging resilient crops for the future climate.
Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties. Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for 1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their molecular and biochemical changes. We found that waterlogging treatment induced the formation of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant activities, hydrogen peroxide and malondialdehyde contents of the waterlogged bananas increased in response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress, we analyzed the transcriptome changes of banana roots. A total of 3,508 unigenes were differentially expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into the complex molecular events of bananas in response to waterlogging stress, which could later help develop waterlogging resilient crops for the future climate.
PR-10 is a member of pathogenesis-related (PR) genes elicited by the plant's defense mechanism during pathogen attack. Elevated expression of PR-10 upon different pathogen invasions has been observed in many plant species suggesting its role as an anti-bacterial, anti-viral and anti-fungal gene. However, the effect of PR-10 in mitigating the infection of Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt in banana has not been reported. In this study, the coding sequences of PR-10 gene isolated from Foc resistant Musa acuminata ssp. malaccensis (MaPR-10) were integrated into a local Foc susceptible commercial banana cultivar, Berangan via co-cultivation of embryogenic cell suspension and Agrobacterium tumefaciens. Out of 17 putative transgenic lines established, 11 of them positively harbored MaPR-10. Among these, Line-19 plantlets showed the most rapid in-vitro propagation and successfully overexpressed the transgene. Following a nursery challenge experiment with a virulent Foc race 4 (CI HIR) isolate, about 30% of Line-19 plants showed a one-week delay in disease progression when compared to the untransformed controls. From the final evaluation performed in the 5 th week-post-inoculation, the leaf symptoms index (LSI) and rhizome discoloration index (RDI) of Line-19 was 3.4 and 6.1, respectively, indicating the disease had progressed. The findings of this study enrich the current existing knowledge on the roles of PR-10 in combating fungal disease in plants.
Vacuolar processing enzyme (VPE) is a cysteine protease responsible for vacuolar proteins’ maturation and regulation of programmed cell death (PCD). Four isoforms of Arabidopsis thaliana VPEs were identified previously, but only the functions of βVPE, γVPE, and δVPE were determined. The specific function of a gene is linked to the cis-acting elements in the promoter region. A promoter analysis found repetitive drought-related cis-elements in αVPE, which highlight its potential involvement in drought regulation in A. thaliana. The further co-expression network portraying genes interacting with αVPE substantiated its drought-regulation-related function. Expression of αVPE was upregulated after drought treatment in A. thaliana. To confirm the role of αVPE, a loss of function study revealed that αVPE knockout mutants remained green compared with WT after drought treatment. The mutants had reduced proline activity, decreased sucrose content, and lower MDA content, but increased photosynthetic pigments, indicating that αVPE negatively regulates drought tolerance in A. thaliana. Taken together, our findings serve as important evidence of the involvement of αVPE in modulating drought tolerance in A. thaliana.
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most threatening fungal diseases affecting banana plantations across the globe. It was first discovered in Australia in 1874 and has now spread to numerous different regions in the world hinting at the persistency of the pathogen. Various management strategies have been devised aiming mainly on improving the plant's tolerance or suppressing the infection. Fungicide is commonly used to control the disease spread, but it does not provide total protection to the plants besides displaying selective effectiveness on certain Foc strains. Alternatively, farmers apply crop rotation, rice hull burning, biological soil disinfestation, and compound-supplemented soil in their banana plantations. Studies have also shown that certain biocontrol agents manage to curb the disease threat. Selection of somaclonal variants and genetic manipulation via induced mutagenesis and transformation are also among the alternatives that have been implemented in producing Fusarium-tolerant and Fusariumresistant banana plants. This chapter will describe Fusarium epidemics in banana, the effectiveness and challenges of different management approaches, as well as the future alternatives that can be adopted by taking advantages of the latest advances in omics technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.