Solution-processed organo-lead halide
perovskites are produced with sharp, color-pure electroluminescence
that can be tuned from blue to green region of visible spectrum (425–570
nm). This was accomplished by controlling the halide composition of
CH3NH3Pb(BrxCl1–x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters
change monotonically with composition. The films possess remarkably
sharp band edges and a clean bandgap, with a single optically active
phase. These chloride–bromide perovskites can potentially be
used in optoelectronic devices like solar cells and light emitting
diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs
with narrow emission full width at half maxima (FWHM) and low turn
on voltages using thin-films of these perovskite materials, including
a blue CH3NH3PbCl3 perovskite LED
with a narrow emission FWHM of 5 nm.
The development of medium-bandgap solar cell absorber materials is of interest for the design of devices such as tandem solar cells and building-integrated photovoltaics. The recently developed perovskite solar cells can be suitable candidates for these applications. At present, wide bandgap alkylammonium lead bromide perovskite absorbers require a high-temperature sintered mesoporous TiO2 photoanode in order to function efficiently, which makes them unsuitable for some of the above applications. Here, we present for the first time highly efficient wide bandgap planar heterojunction solar cells based on the structurally related formamidinium lead bromide. We show that this material exhibits much longer diffusion lengths of the photoexcited species than its methylammonium counterpart. This results in planar heterojunction solar cells exhibiting power conversion efficiencies approaching 7%. Hence, formamidinium lead bromide is a strong candidate as a wide bandgap absorber in perovskite solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.