Solution-processable
metal halide perovskites show immense promise
for use in photovoltaics and other optoelectronic applications. The
ability to tune their bandgap by alloying various halide anions (for
example, in CH3NH3Pb(I1–x
Br
x
)3, 0 < x < 1) is however hampered by the reversible photoinduced
formation of sub-bandgap emissive states. We find that ion segregation
takes place via halide defects, resulting in iodide-rich low-bandgap
regions close to the illuminated surface of the film. This segregation
may be driven by the strong gradient in carrier generation rate through
the thickness of these strongly absorbing materials. Once returned
to the dark, entropically driven intermixing of halides returns the
system to a homogeneous condition. We present approaches to suppress
this process by controlling either the internal light distribution
or the defect density within the film. These results are relevant
to stability in both single- and mixed-halide perovskites, leading
the way toward tunable and stable perovskite thin films for photovoltaic
and light-emitting applications.
We report the influence of monovalent cation halide additives on the optical, excitonic and electrical properties of CH 3 NH 3 PbI 3 perovskite. Monovalent cation halide with similar ionic radii to Pb 2+ , including Cu + , Na + and Ag + , were added to explore possibility of doping. We observed significant reduction of subbandgap optical absorption and lower energetic disorder along with a shift in the Fermi level of the perovskite in the presence of these cations. The bulk hole mobility of the additive based perovskites as estimated using the space charge limited current method exhibited an increase of up to an order of magnitude compared to the pristine perovskites with a significant decrease in the activation energy.Consequentially, enhancement in the photovoltaic parameters of additive-based solar cells was achieved.We observed an increase in open circuit voltage for AgI (~1.02 vs 0.95 V for the pristine) and photocurrent density for NaI and CuBr based solar cells (≈23 vs 21 mA.cm -2 for the pristine). This enhanced photovoltaic performance could be attributed to the formation of uniform and continuous perovskite film, better conversion and loading of perovskite as well as the enhancement in the bulk charge transport along with a minimization of disorder, pointing towards possible surface passivation.
Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔVt < 2 V over 10 hours of continuous operation), and high mobility values >1 cm2/V·s at room temperature. We show that multiple cation incorporation using strain-relieving cations like Cs and cations such as Rb, which act as passivation/crystallization modifying agents, is an effective strategy for reducing vacancy concentration and ion migration in perovskite FETs. Furthermore, we demonstrate that treatment of perovskite films with positive azeotrope solvents that act as Lewis bases (acids) enables a further reduction in defect density and substantial improvement in performance and stability of n-type (p-type) perovskite devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.