Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radicalcatalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radicalcatalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids.Lipid peroxidation (LPO), triggered by lipoxygenases (LOX) and reactive oxygen species (ROS), is a hallmark of plant pathogen responses, both in signal transduction processes and during the execution of programmed cell death. Typically, LOX oxidize free fatty acids in the cytosol or chloroplasts, thereby initiating several oxylipin pathways including the jasmonate and hydroperoxide lyase pathway (Mosblech et al., 2009). Among the ROS typically produced in plant stress responses, only singlet oxygen ( 1 O 2 ) and free radicals are sufficiently reactive to oxidize polyunsaturated fatty acids directly (Mueller et al., 2006). These short-lived ROS produced in different cellular compartments, including plasma membrane, plastids, mitochondria, peroxisomes, endoplasmic reticulum, and cytosol, are thought to oxidize predominantly glycerolipids close to the site of ROS production. In a recent study, 1 O 2 was shown to be a major ROS species involved in photooxidative lipid oxidation and damage in Arabidopsis (Arabidopsis thaliana) leaves (Triantaphylidès et al., 2008). However, the major sites and molecular targets of lipid oxidation as well as the relative contributions of different ROS species and LOXs to LPO and fragmentation have not been clarified.LOXs and ROS have also been implicat...
Jasmonic acid and related oxylipins are controversially discussed to be involved in regulating the initiation and progression of leaf senescence. To this end, we analyzed profiles of free and esterified oxylipins during natural senescence and upon induction of senescence-like phenotypes by dark treatment and flotation on sorbitol in Arabidopsis (Arabidopsis thaliana). Jasmonic acid and free 12-oxo-phytodienoic acid increased during all three processes, with the strongest increase of jasmonic acid after dark treatment. Arabidopside content only increased considerably in response to sorbitol treatment. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols decreased during these treatments and aging. Lipoxygenase 2-RNA interference (RNAi) plants were generated, which constitutively produce jasmonic acid and 12-oxo-phytodienoic acid but do not exhibit accumulation during natural senescence or upon stress treatment. Chlorophyll loss during aging and upon dark incubation was not altered, suggesting that these oxylipins are not involved in these processes. In contrast, lipoxygenase 2-RNAi lines and the allene oxid synthase-deficient mutant dde2 were less sensitive to sorbitol than the wild type, indicating that oxylipins contribute to the response to sorbitol stress.
(N.S., S.B., M.J.M.)Lipases are involved in the generation of jasmonates, which regulate responses to biotic and abiotic stresses. Two sn-1-specific acyl hydrolases, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) and DONGLE (DGL), have been reported to be localized in plastids and to be essential and sufficient for jasmonate biosynthesis in Arabidopsis (Arabidopsis thaliana) leaves. Here, we show that levels of 12-oxo-phytodienoic acid (OPDA) and jasmonic acid in three different DGL RNA interference lines and the dad1 mutant were similar to wild-type levels during the early wound response as well as after Pseudomonas infection. Due to the lack of sn-2 substrate specificity, synthesis of dinor OPDA was not expected and also not found to be affected in DGL knockdown and DGL-overexpressing lines. As reported, DAD1 participates in jasmonate formation only in the late wound response. In addition, DGL protein was found to be localized in lipid bodies and not in plastids. Furthermore, jasmonate levels in 16 additional mutants defective in the expression of lipases with predicted chloroplast localization did not show strong differences from wild-type levels after wounding, except for a phospholipase A (PLA) PLA-Ig1 (At1g06800) mutant line that displayed diminished wound-induced dinor OPDA, OPDA, and jasmonic acid levels. A quadruple mutant defective in four DAD1-like lipases displayed similar jasmonate levels as the mutant line of PLA-Ig1 after wounding. Hence, we identify PLAIg1 as a novel target gene to manipulate jasmonate biosynthesis. Our results suggest that, in addition to DAD1 and PLA-Ig1, still unidentified enzymes with sn-1 and sn-2 hydrolase activity are involved in wound-and pathogen-induced jasmonate formation, indicating functional redundancy within the lipase family.
Jasmonates are oxylipin signals that play important roles in the development of fertile flowers and in defense against pathogens and herbivores in leaves. The aim of this work was to understand the synthesis and function of jasmonates in roots. Grafting experiments with a jasmonate-deficient mutant demonstrated that roots produce jasmonates independently of leaves, despite low expression of biosynthetic enzymes. Levels of 12-oxo-phytodienoic acid, jasmonic acid, and its isoleucine derivative increased in roots upon osmotic and drought stress. Wounding resulted in a decrease of preformed 12-oxo-phytodienoic acid concomitant with an increase of jasmonic acid and jasmonoyl-isoleucine. 13-Lipoxygenases catalyze the first step of lipid oxidation leading to jasmonate production. Analysis of 13-lipoxygenase-deficient mutant lines showed that only one of the four 13-lipoxygenases, LOX6, is responsible and essential for stress-induced jasmonate accumulation in roots. In addition, LOX6 was required for production of basal 12-oxo-phytodienoic acid in leaves and roots. Loss-of-function mutants of LOX6 were more attractive to a detritivorous crustacean and more sensitive to drought, indicating that LOX6-derived oxylipins are important for the responses to abiotic and biotic factors.
Crown gall tumors induced by Agrobacterium tumefaciens represent a sink that has to be provided with nutrients and water by the host plant. The lack of an intact epidermis or cuticle results in uncontrolled loss of water. However, neither the tumor nor the host plant displays wilting. This phenomenon points to drought adaptation in both tumors and the crown gall host plant. To understand the underlying molecular mechanisms of protection against desiccation the gene expression pattern of Arabidopsis (Arabidopsis thaliana) tumors was integrated with the profile of stress metabolites: Arabidopsis tumors accumulated high amounts of abscisic acid (ABA), the ethylene precursor aminocyclopropyl carboxylic acid, osmoprotectants, and form a suberized periderm-like protective layer. Suberization of the outer tumor cell layers most likely is mediated by ABA since external application of ABA induced suberization of Arabidopsis roots. However, the expression level of the classical marker genes, known to respond to drought stress and/or ABA, was lower in tumors. Instead another set of drought and/or ABAinducible genes was more highly transcribed. Elevated transcription of several ABA-dependent aquaporin genes might indicate that ABA controls the water balance of the tumor. The retarded tumor growth on abi and aba mutant plants underlined the importance of a tumor-specific ABA signaling pathway. Taken together, we propose that ABA is an important signal for protection of tumors against desiccation and thus supports tumor development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.