We describe an original, short, and convenient chemical synthesis of enantiopure (S)-4,5-dihydroxy-2,3-pentanedione (DPD), starting from commercial methyl (S)-(؊)-2,2-dimethyl-1,3-dioxolane-4-carboxylate. DPD is the precursor of autoinducer (AI)-2, the proposed signal for bacterial interspecies communication. AI-2 is synthesized by many bacterial species in three enzymatic steps. The last step, a LuxS-catalyzed reaction, leads to the formation of DPD, which spontaneously cyclizes into AI-2. AI-2-like activity of the synthesized molecule was ascertained by the Vibrio harveyi bioassay. To further validate the biological activity of synthetic DPD and to explore its potential in studying DPD (AI-2)-mediated signaling, a Salmonella typhimurium luxS mutant was constructed. Expression of the AI-2 regulated lsr operon can be rescued in this luxS mutant by addition of synthetic DPD or genetic complementation. Biofilm formation by S. typhimurium has been reported to be defective in a luxS mutant, and this was confirmed in this study to test DPD for chemical complementation. However, biofilm formation of the luxS mutant cannot be restored by addition of DPD. In contrast, introduction of luxS under control of its own promoter complemented biofilm formation. Further results demonstrated that biofilm formation of the luxS mutant cannot be restored with luxS under control of the strong nptII promoter. This indicates that altering the intrinsic promoter activity of luxS affects Salmonella biofilm formation. Conclusively, we synthesized biologically active DPD. Using this chemical compound in combination with genetic approaches opens new avenues in studying AI-2-mediated signaling.
all media for any purpose, provided this notice is preserved along with the article's original URL.In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detection We demonstrated the efficiency of our procedure by recovering most of the known PmrAB-dependent targets and by identifying unknown targets that we were able to validate experimentally. We also pinpointed directions for further research that could help elucidate the S. typhimurium virulence pathway.
AbstractBackground: The PmrAB (BasSR) two-component regulatory system is required for Salmonella typhimurium virulence. PmrAB-controlled modifications of the lipopolysaccharide (LPS) layer confer resistance to cationic antibiotic polypeptides, which may allow bacteria to survive within macrophages. The PmrAB system also confers resistance to Fe 3+ -mediated killing. New targets of the system have recently been discovered that seem not to have a role in the well-described functions of PmrAB, suggesting that the PmrAB-dependent regulon might contain additional, unidentified targets.
Todays' medical treatments are faced with alarming resistance development of pathogenic bacteria, due to (amongst other factors) the abundant and often inappropriate use of antibiotics. The development of a novel class of antibiotics has therefore become a major research theme. This paper presents a conceptual overview of how this quest is tackled in a multidisciplinary fashion when the focus lies on detecting and understanding regulatory pathways that lead to virulence. The importance of well designed and controlled bioreactor experiments as well as the integration (into mathematical models) of data, collected at different levels and from different sources, will be stressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.