A numerical method for 2D LEFM crack propagation simulation in a cement mantle of the total hip replacement (THR) is presented. This work is based on the implementation of the displacement correlation technique (DCT) and the maximum circumferential stress (MCS) theory in a finite element code, using the Ansys Parametric Design Language (APDL). At each crack increment length, the crack direction angle is evaluated as a function of stress intensity factors (SIFs). The crack box technique is investigated for crack propagation simulation. The advantage of this technique is facilitation of the automatic remeshing of the structure during crack extension. In this paper, we analyzed the mechanical behavior of cracks initiated in the cement mantle by evaluating the SIFs. The effect of the cavities and the initial crack directions on the crack growth path has been highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.