Mathematical models based on fractional-order differential equations have recently gained interesting insights into epidemiological phenomena, by virtue of their memory effect and nonlocal nature. This paper investigates the nonlinear dynamic behavior of a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives. The model is based on the Caputo operator and takes into account the daily new cases, the daily additional severe cases, and the daily deaths. By analyzing the stability of the equilibrium points and by continuously varying the values of the fractional order, the paper shows that the conceived COVID-19 pandemic model exhibits chaotic behaviors. The system dynamics are investigated via bifurcation diagrams, Lyapunov exponents, time series, and phase portraits. A comparison between integer-order and fractional-order COVID-19 pandemic models highlights that the latter is more accurate in predicting the daily new cases. Simulation results, besides to confirming that the novel fractional model well fit the real pandemic data, also indicate that the numbers of new cases, severe cases, and deaths undertake chaotic behaviors without any useful attempt to control the disease.
Supplementary Information
The online version supplementary material available at 10.1007/s11071-021-06867-5.
This article investigates a non-equilibrium chaotic system in view of commensurate and incommensurate fractional orders and with only one signum function. By varying some values of the fractional-order derivative together with some parameter values of the proposed system, different dynamical behaviors of the system are explored and discussed via several numerical simulations. This system displays complex hidden dynamics such as inversion property, chaotic bursting oscillation, multistabilty, and coexisting attractors. Besides, by means of adapting certain controlled constants, it is shown that this system possesses a three-variable offset boosting system. In conformity with the performed simulations, it also turns out that the resultant hidden attractors can be distributively ordered in a grid of three dimensions, a lattice of two dimensions, a line of one dimension, and even arbitrariness in the phase space. Through considering the Caputo fractional-order operator in all performed simulations, phase portraits in two- and three-dimensional projections, Lyapunov exponents, and the bifurcation diagrams are numerically reported in this work as beneficial exit results.
This study intends to examine different dynamics of the chaotic incommensurate fractional-order Hopfield neural network model. The stability of the proposed incommensurate-order model is analyzed numerically by continuously varying the values of the fractional-order derivative and the values of the system parameters. It turned out that the formulated system using the Caputo differential operator exhibits many rich complex dynamics, including symmetry, bistability, and coexisting chaotic attractors. On the other hand, it has been detected that by adapting the corresponding controlled constants, such systems possess the so-called offset boosting of three variables. Besides, the resultant periodic and chaotic attractors can be scattered in several forms, including 1D line, 2D lattice, and 3D grid, and even in an arbitrary location of the phase space. Several numerical simulations are implemented, and the obtained findings are illustrated through constructing bifurcation diagrams, computing Lyapunov exponents, calculating Lyapunov dimensions, and sketching the phase portraits in 2D and 3D projections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.