The best target of POU proteins (Oct-1, Oct-2) is an octamer sequence ATGCAAAT. POU proteins also recognize, with weaker affinity, the TAAT-like targets of another group of regulatory factors, the homeoproteins. Up to now, it has not been known why Cys50 of the POUHdomain is absolutely conserved in contrast to that in homeoproteins. To assess the importance of Cys50 in determining the binding specificity of POU proteins, all possible amino acids were substituted for Cys at position 50, and the resulting mutants were tested with probes containing octamer (ATGCAAATNN) or homeospecific binding sites. Only the wild-type POU was shown to adequately discriminate between the octamer and homeospecific sites, and the protein affinity was only slightly affected by the nucleotide sequence flanking the octamer at the 3'-end. Any amino acid substitution at position 50 resulted in the mutant protein binding efficiently both to the octamer and the TAAT-like sequences. Moreover, in this case the 3'-flanking sequences influenced the binding to a much greater extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.