Representations of social categories help us make sense of the social world, supporting predictions and explanations about groups and individuals. In an experiment with 156 participants, we explore whether children and adults are able to understand category-property associations (such as the association between "girls" and "liking pink") in structural terms, locating an object of explanation within a larger structure and identifying structural constraints that act on elements of the structure. We show that children as young as 3-4 years old show signs of structural thinking, and that 5-6-year-olds show additional differentiation between structural and nonstructural thinking, yet still fall short of adult performance. These findings introduce structural connections as a new type of nonaccidental relationship between a property and a category, and present a viable alternative to internalist accounts of social categories, such as psychological essentialism. (PsycINFO Database Record
Medicinal chemists’ “intuition” is critical for success in modern drug discovery. Early in the discovery process, chemists select a subset of compounds for further research, often from many viable candidates. These decisions determine the success of a discovery campaign, and ultimately what kind of drugs are developed and marketed to the public. Surprisingly little is known about the cognitive aspects of chemists’ decision-making when they prioritize compounds. We investigate 1) how and to what extent chemists simplify the problem of identifying promising compounds, 2) whether chemists agree with each other about the criteria used for such decisions, and 3) how accurately chemists report the criteria they use for these decisions. Chemists were surveyed and asked to select chemical fragments that they would be willing to develop into a lead compound from a set of ∼4,000 available fragments. Based on each chemist’s selections, computational classifiers were built to model each chemist’s selection strategy. Results suggest that chemists greatly simplified the problem, typically using only 1–2 of many possible parameters when making their selections. Although chemists tended to use the same parameters to select compounds, differing value preferences for these parameters led to an overall lack of consensus in compound selections. Moreover, what little agreement there was among the chemists was largely in what fragments were undesirable. Furthermore, chemists were often unaware of the parameters (such as compound size) which were statistically significant in their selections, and overestimated the number of parameters they employed. A critical evaluation of the problem space faced by medicinal chemists and cognitive models of categorization were especially useful in understanding the low consensus between chemists.
We report three experiments investigating whether people's judgments about causal relationships are sensitive to the robustness or stability of such relationships across a range of background circumstances. In Experiment 1, we demonstrate that people are more willing to endorse causal and explanatory claims based on stable (as opposed to unstable) relationships, even when the overall causal strength of the relationship is held constant. In Experiment 2, we show that this effect is not driven by a causal generalization's actual scope of application. In Experiment 3, we offer evidence that stable causal relationships may be seen as better guides to action. Collectively, these experiments document a previously underappreciated factor that shapes people's causal reasoning: the stability of the causal relationship.
Explanation and causation are intimately related. Explanations often appeal to causes, and causal claims are often answers to implicit or explicit questions about why or how something occurred. This chapter considers what we can learn about causal reasoning from research on explanation. In particular, it reviews an emerging body of work suggesting that explanatory considerations—such as the simplicity or scope of a causal hypothesis—can systematically influence causal inference and learning. It also discusses proposed distinctions among types of explanations and reviews the effects of each explanation type on causal reasoning and representation. Finally, it considers the relationship between explanations and causal mechanisms and raises important questions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.