Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion–base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.
There is growing interest in using genetic variants to augment the reference genome into a graph genome, with alternative sequences, to improve read alignment accuracy and reduce allelic bias. While adding a variant has the positive effect of removing an undesirable alignment score penalty, it also increases both the ambiguity of the reference genome and the cost of storing and querying the genome index. We introduce methods and a software tool called FORGe for modeling these effects and prioritizing variants accordingly. We show that FORGe enables a range of advantageous and measurable trade-offs between accuracy and computational overhead.Electronic supplementary materialThe online version of this article (10.1186/s13059-018-1595-x) contains supplementary material, which is available to authorized users.
Most sequencing data analyses start by aligning sequencing reads to a linear reference genome, but failure to account for genetic variation leads to reference bias and confounding of results downstream. Other approaches replace the linear reference with structures like graphs that can include genetic variation, incurring major computational overhead. We propose the reference flow alignment method that uses multiple population reference genomes to improve alignment accuracy and reduce reference bias. Compared to the graph aligner vg, reference flow achieves a similar level of accuracy and bias avoidance but with 14% of the memory footprint and 5.5 times the speed.
The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure including long palindromes, tandem repeats, and segmental duplications. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029 base pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, revealing the complete ampliconic structures of TSPY, DAZ, and RBMY; 42 additional protein-coding genes, mostly from the TSPY gene family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a prior assembly of the CHM13 genome and mapped available population variation, clinical variants, and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.
Complete, telomere-to-telomere genome assemblies promise improved analyses and the discovery of new variants, but many essential genomic resources remain associated with older reference genomes. Thus, there is a need to translate genomic features and read alignments between references. Here we describe a new method called levioSAM2 that accounts for reference changes and performs fast and accurate lift-over between assemblies using a whole-genome map. In addition to enabling the use of multiple references, we demonstrate that aligning reads to a high-quality reference (e.g. T2T-CHM13) and lifting to an older reference (e.g. GRCh38) actually improves the accuracy of the resulting variant calls on the old reference. By leveraging the quality improvements of T2T-CHM13, levioSAM2 reduces small-variant calling errors by 11.4-39.5% compared to GRC-based mapping using real Illumina datasets. LevioSAM2 also improves long-read-based structural variant calling and reduces errors from 3.8-11.8% for a PacBio HiFi dataset. Performance is especially improved for a set of complex medically-relevant genes, where the GRC references are lower quality. The software is available at https://github.com/milkschen/leviosam2 under the MIT license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.