Amorphous silicon quantum dots (a-Si QDs), which show a quantum confinement effect were grown in a silicon nitride film by plasma-enhanced chemical vapor deposition. Red, green, blue, and white photoluminescence were observed from the a-Si QD structures by controlling the dot size. An orange light-emitting diode (LED) was fabricated using a-Si QDs with a mean size of 2.0 nm. The turn-on voltage was less than 5 V. An external quantum efficiency of 2×10−3% was also demonstrated. These results show that a LED using a-Si QDs embedded in the silicon nitride film is superior in terms of electrical and optical properties to other Si-based LEDs.
Surface acoustic wave ͑SAW͒ devices were fabricated on ZnO thin films deposited on Si substrates. Effects of ZnO film thickness on the wave mode and resonant frequency of the SAWs have been investigated. Rayleigh and Sezawa waves were detected, and their resonant frequencies decrease with increase in film thickness. The Sezawa wave has much higher acoustic velocity and larger signal amplitude than those of Rayleigh mode wave. Acoustic streaming for mixing has been realized in piezoelectric thin film SAWs. The Sezawa wave has a much better efficiency in streaming, and thus is very promising for application in microfluidics.
We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.
An advanced model to explain the current spreading phenomenon of a conventional GaN-based light-emitting diode is presented. For this work, an equivalent circuit, consisting of the two lateral resistance components of the p-transparent electrode and the n-type layer is proposed. Theoretical calculations clearly reveal that the current density crowds near the n or p pads according to the device parameters and has an exponential behavior as a function of the lateral length. Based on these results, appropriate device parameters including the critical transparent-electrode thickness were determined, leading to a perfectly uniform current distribution. It was even possible to demonstrate the ideal device geometry without the need for a transparent electrode such as an interdigitated structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.