Amorphous silicon quantum dots (a-Si QDs) were grown in a silicon nitride film by plasma enhanced chemical vapor deposition. Transmission electron micrographs clearly demonstrated that a-Si QDs were formed in the silicon nitride. Photoluminescence and optical absorption energy measurement of a-Si QDs with various sizes revealed that tuning of the photoluminescence emission from 2.0 to 2.76 eV is possible by controlling the size of the a-Si QD. Analysis also showed that the photoluminescence peak energy E was related to the size of the a-Si QD, a (nm) by E(eV) = 1.56+2.40/a(2), which is a clear evidence for the quantum confinement effect in a-Si QDs.
Silicon nanocrystals were in situ grown in a silicon nitride film by plasma-enhanced chemical vapor deposition. The size and structure of silicon nanocrystals were confirmed by high-resolution transmission electron microscopy. Depending on the size, the photoluminescence of silicon nanocrystals can be tuned from the near infrared (1.38eV) to the ultraviolet (3.02eV). The fitted photoluminescence peak energy as E(eV)=1.16+11.8∕d2 is evidence for the quantum confinement effect in silicon nanocrystals. The results demonstrate that the band gap of silicon nanocrystals embedded in silicon nitride matrix was more effectively controlled for a wide range of luminescent wavelengths.
The photoluminescence (PL) property of crystalline silicon quantum dots (Si QDs) in silicon nitride grown by using ammonia and silane gases is reported. The peak position of PL could be controlled in the wavelength range from 450 to 700 nm by adjusting the flow rates of ammonia and silane gases. The PL intensity of Si QDs grown by ammonia was more intense compared to that of Si QDs grown by nitrogen gas. To investigate the role of hydrogen in the PL enhancement, the Si QDs grown by nitrogen gas were postannealed under hydrogen ambient. The enhancement in PL intensity was attributed to the hydrogen passivation of dangling bonds related to silicon and/or nitrogen at the interface of Si QDs and silicon nitride.
Silicon nanocrystals were in situ grown in a silicon nitride film by plasma enhanced chemical vapor deposition. The size and structure of silicon nanocrystals were confirmed by high-resolution transmission electron microscopy. Depending on the size, the photoluminescence of silicon nanocrystals can be tuned from the near infrared (1.38 eV) to the ultraviolet (3.02 eV). The fitted photoluminescence peak energy as E(eV) = 1.16 + 11.8/d2 is an evidence for the quantum confinement effect in silicon nanocrystals. The results demonstrate that the band gap of silicon nanocrystals embedded in silicon nitride matrix was more effectively controlled for a wide range of luminescent wavelengths.
The effect of Ni∕Au metal contact on the carrier injection and the electroluminescence of silicon quantum dot light-emitting diodes (LEDs) was investigated. An LED with an annealed Ni∕Au contact at 400°C in air showed a lower threshold voltage compared to that of an as-deposited Ni∕Au contact by forming a nickel silicide, which has a lower work function than Ni at the interface between metal layers and silicon nitride. The optical output power of the LED with the annealed Ni∕Au contact was also increased due to a highly transparent NiO layer and a lowly resistant Au layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.