Synthesis and application of reliable nanoscale materials is progressive domain and limelight of modern nanotechnology. Conventional physicochemical approaches for the synthesis of metal nanoparticles have become obsolete owing to costly and hazardous materials. There is a need to explore alternative, cost-effective and eco-friendly strategies for fabrication of nanoparticle (NPs). Green synthesis of noble metal nanoparticles has emerged as a promising approach in the last decade. Elucidation of the molecular mechanism is highly essential in the biological synthesis of noble metal nanoparticles (NPs) for the controlled size, shape, and monodispersity. Moreover, mechanistic insights will help to scale up the facile synthesis protocols and will enable biotransformation of toxic heavy metals hence also providing the detoxification effects. Therefore, the current review article has primarily targeted the mechanisms involved in the green synthesis of metal NPs, which have been reported during the last few years. Detailed mechanistic pathways have highlighted nitrate reductase as a principle reducing agent in the bacterial mediated synthesis and stabilization of NPs. Furthermore, we have highlighted the potential implications of these mechanisms in bioremediation and biomineralization processes, which can play a critical role in biogeochemical cycling and environmental impacts of heavy metals. We anticipate that this review article will help researchers to address the challenges of bioremediation and modern nanotechnology.
Poultry husbandry is important for the economic health of Pakistan, but the Pakistani poultry industry is negatively impacted by infections from Escherichia coli. We performed Illumina whole genome sequencing on 92 E. coli isolates obtained from the livers of deceased chickens originating in five Pakistani geographical regions. Our analysis indicates that the isolates are predominantly from the B1 and A clade and harbor a diverse number of antibiotic resistance and virulence genes, with no linkage between phylogeny and antibiotic resistance gene presence but some association between phylogeny and virulence gene and SNP presence for the B1 and E phylogroups. The colistin resistance gene mcr-1 and the quinolone resistance gene qnrS1 were both found in 13/92 isolates. Alarmingly, 82/92 of the E. coli strains characterized in this study are multidrug resistant with 100% (92/92) resistance to lincomycin, 81.5% (75/92) to streptomycin, 79.3% (73/92) to ampicillin and 66.3% (61/92) to ciprofloxacin. These results provide a high-resolution analysis of poultry-associated E. coli isolates in an area with a high endemic burden of antibiotic resistance. Surveillance of antibiotic resistance in poultry associated E. coli isolates is an important pillar of the One Health concept to integrate analysis of potential pathogens in human, animal, and environmental niches.
Biological routes of synthesising metal nanoparticles (NPs) using microbes have been gaining much attention due to their low toxicity and eco-friendly nature. Pseudomonas aeruginosa JP2 isolated from metal contaminated soil was evaluated towards extracellular synthesis of silver NPs (AgNPs). Cell-free extract (24 h) of the bacterial isolate was reacted with AgNO for 24 h in order to fabricate AgNPs. Preliminary observations were recorded in terms of colour change of the reaction mixture from yellow to greyish black. UV-visible spectroscopy of the reaction mixture has shown a progressive increase in optical densities that correspond to peaks near 430 nm, depicting reduction of ionic silver (Ag) to atomic silver (Ag) thereby synthesising NPs. X-ray diffraction spectra exhibited the 2θ values to be 38.4577° confirming the crystalline and spherical nature of NPs [9.6 - 26.7 (Ave. = 17.2 nm)]. Transmission electron microscopy finally confirmed the size of the particles varying from 5 to 60 nm. Moreover, rhamnolipids and proteins were identified as stabilising molecules for the AgNPs through Fourier transform-infrared spectroscopy. Characterisation of bacterial crude and purified protein fractions confirmed the involvement of nitrate reductase (molecular weight 66 kDa and specific activity = 3.8 U/mg) in the Synthesis of AgNPs.
Candida species are pleomorphic, commensal fungi associated with candidiasis. The extracellular hydrolytic-secreted aspartyl proteinases are recognized as chief agents for pathogenesis of Candida species, involved in the degradation of proteins and adhesion during biofilm formation. This study aimed at exploring inhibitory effect of mycogenic silver nanoparticles (Ag NPs) against C. albicans and non-albicans' biofilm growth and aspartyl proteinase enzyme activity in-vitro. Biofilm forming, drug-resistant clinical isolates of C. albicans (n = 25) and non-albicans (n= 20) were assessed for their ability to reduce the metabolic and aspartyl proteinase activities using XTT assay and spectrophotometric analysis at different concentrations of mycogenic Ag NPs. After 24 h of incubation, significant reduction (>50%) in metabolic activity was observed with 100 ppm mycogenic Ag NPs. Incubation time has greater inhibitory effect against Candida spp. biofilms secreted aspartyl proteinase after treatment with 100 ppm mycogenic Ag NPs. Inhibition of secreted aspartyl proteinase by mycogenic Ag NPs provides an insight towards the mechanism for the treatment of Candida-associated infections involving biofilms-related infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.