Microbiome studies have demonstrated the high inter-individual diversity of the gut microbiota. However, how the initial composition of the microbiome affects the impact of antibiotics on microbial communities is relatively unexplored. To specifically address this question, we administered a second-generation cephalosporin, cefprozil, to healthy volunteers. Stool samples gathered before antibiotic exposure, at the end of the treatment and 3 months later were analysed using shotgun metagenomic sequencing. On average, 15 billion nucleotides were sequenced for each sample. We show that standard antibiotic treatment can alter the gut microbiome in a specific, reproducible and predictable manner. The most consistent effect of the antibiotic was the increase of Lachnoclostridium bolteae in 16 out of the 18 cefprozil-exposed participants. Strikingly, we identified a subgroup of participants who were enriched in the opportunistic pathogen Enterobacter cloacae after exposure to the antibiotic, an effect linked to lower initial microbiome diversity and to a Bacteroides enterotype. Although the resistance gene content of participants' microbiomes was altered by the antibiotic, the impact of cefprozil remained specific to individual participants. Resistance genes that were not detectable prior to treatment were observed after a 7-day course of antibiotic administration. Specifically, point mutations in beta-lactamase blaCfxA-6 were enriched after antibiotic treatment in several participants. This suggests that monitoring the initial composition of the microbiome before treatment could assist in the prevention of some of the adverse effects associated with antibiotics or other treatments.
To date, mutations in two genes, SPATA16 and DPY19L2, have been identified as responsible for a severe teratozoospermia, namely globozoospermia. The two initial descriptions of the DPY19L2 deletion lead to a very different rate of occurrence of this mutation among globospermic patients. In order to better estimate the contribution of DPY19L2 in globozoospermia, we screened a larger cohort including 64 globozoospermic patients. Twenty of the new patients were homozygous for the DPY19L2 deletion, and 7 were compound heterozygous for both this deletion and a point mutation. We also identified four additional mutated patients. The final mutation load in our cohort is 66.7% (36 out of 54). Out of 36 mutated patients, 69.4% are homozygous deleted, 19.4% heterozygous composite and 11.1% showed a homozygous point mutation. The mechanism underlying the deletion is a non-allelic homologous recombination (NAHR) between the flanking low-copy repeats. Here, we characterized a total of nine breakpoints for the DPY19L2 NAHR-driven deletion that clustered in two recombination hotspots, both containing direct repeat elements (AluSq2 in hotspot 1, THE1B in hotspot 2). Globozoospermia can be considered as a new genomic disorder. This study confirms that DPY19L2 is the major gene responsible for globozoospermia and enlarges the spectrum of possible mutations in the gene. This is a major finding and should contribute to the development of an efficient molecular diagnosis strategy for globozoospermia.
The role of chromosomal toxin-antitoxin (TA) systems, which are ubiquitous within the genomes of free-living bacteria, is still debated. We have scanned the Vibrio cholerae N16961 genome for class 2 TA genes and identified 18 gene pair candidates. Interestingly, all but one are located in the chromosome 2 superintegron (SI). The single TA found outside the SI is located on chromosome 1 and is related to the well-characterized HipAB family, which is known to play a role in antibiotic persistence. We investigated this clustering within the SI and its possible biological consequences by performing a comprehensive functional analysis on all of the putative TA systems. We demonstrate that the 18 TAs identified encode functional toxins and that their cognate antitoxins are able to neutralize their deleterious effects when expressed in Escherichia coli. In addition, we reveal that the 17 predicted TA systems of the SI are transcribed and expressed in their native context from their own promoters, a situation rarely found in integron cassettes. We tested the possibility of interactions between noncognate pairs of all toxins and antitoxins and found no cross-interaction between any of the different TAs. Although these observations do not exclude other roles, they clearly strengthen the role of TA systems in stabilizing the massive SI cassette array of V. cholerae. IMPORTANCEThe chromosomal toxin-antitoxin systems have been shown to play various, sometimes contradictory roles, ranging from genomic stabilization to bacterial survival via persistence. Determining the interactions between TA systems hosted within the same bacteria is essential to understand the hierarchy between these different roles. We identify here the full set of class 2 TAs carried in the Vibrio cholerae N16961 genome and found they are all, with a single exception, located in the chromosome 2 superintegron. Their characterization, in terms of functionality, expression, and possible cross-interactions, supports their main role as being the stabilization of the 176-cassette-long array of the superintegron but does not exclude dual roles, such as stress response elements, persistence, and bacteriophage defense through abortive infection mechanisms.T oxin-antitoxin (TA) systems were discovered in 1983 on plasmid F of Escherichia coli (1) and were shown to be involved in stable plasmid maintenance by postsegregational killing, a mechanism distinct from replication and partition. These systems typically consist of an operon of two genes, which encode a toxin that targets an essential cellular function and an antitoxin that binds to and inhibits the toxin. Toxin activity is regulated through differential stability of the stable toxin and the labile antitoxin; loss of a TA system by the progeny during cell division results in cell death by the action of the stable toxin (for reviews, see references 2 and 3). The antitoxin, in most cases, also acts as a transcriptional autorepressor of the operon, and the degradation of the antitoxin results in the tran...
c Toxin-antitoxin (TA) systems have been reported in the genomes of most bacterial species, and their role when located on the chromosome is still debated. TA systems are particularly abundant in the massive cassette arrays associated with chromosomal superintegrons (SI). Here, we describe the characterization of two superintegron cassettes encoding putative TA systems. The first is the phd-doc SI system identified in Vibrio cholerae N16961. We determined its distribution in 36 V. cholerae strains and among five V. metschnikovii strains. We show that this cassette, which is in position 72 of the V. cholerae N16961 cassette array, is functional, carries its own promoter, and is expressed from this location. Interestingly, the phd-doc SI system is unable to control its own expression, most likely due to the absence of any DNA-binding domain on the antitoxin. In addition, this SI system is able to cross talk with the canonical P1 phage system. The second cassette that we characterized is the ccd Vfi cassette found in the V. fischeri superintegron. We demonstrate that CcdB Vfi targets DNA-gyrase, as the canonical CcB F toxin, and that ccd Vfi regulates its expression in a fashion similar to the ccd F operon of the conjugative plasmid F. We also establish that this cassette is functional and expressed in its chromosomal context in V. fischeri CIP 103206T. We tested its functional interactions with the ccdAB F system and found that CcdA Vfi is specific for its associated CcdB Vfi and cannot prevent CcdB F toxicity. Based on these results, we discuss the possible biological functions of these TA systems in superintegrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.