Land use and land cover (LULC) change is one of the key driving elements responsible for altering the hydrology of a watershed. In this study, we investigated the spatio-temporal LULC changes between 2001 and 2018 and their impacts on the water balance of the Jhelum River Basin. The Soil and Water Assessment Tool (SWAT) was used to analyze the impacts on water yield (WY) and evapotranspiration (ET). The model was calibrated and validated with discharge data between 1995 and 2005 and then simulated with different land use. The increase was observed in forest, settlement and water areas during the study period. At the catchment scale, we found that afforestation has reduced the WY and surface runoff, while enhanced the ET. Moreover, this change was more pronounced at the sub-basin scale. Some sub-basins, especially in the northern part of the study area, exhibited an increase in WY due to an increase in the snow cover area. Similarly, extremes land use scenarios also showed significant impact on water balance components. The basin WY has decreased by 38 mm/year and ET has increased about 36 mm/year. The findings of this study could guide the watershed manager in the development of sustainable LULC planning and water resources management.
Projected climate changes for the 21st century may cause great uncertainties on the hydrology of a river basin. This study explored the impacts of climate change on the water balance and hydrological regime of the Jhelum River Basin using the Soil and Water Assessment Tool (SWAT). Two downscaling methods (SDSM, Statistical Downscaling Model and LARS-WG, Long Ashton Research Station Weather Generator), three Global Circulation Models (GCMs), and two representative concentration pathways (RCP4.5 and RCP8.5) for three future periods (2030s, 2050s, and 2090s) were used to assess the climate change impacts on flow regimes. The results exhibited that both downscaling methods suggested an increase in annual streamflow over the river basin. There is generally an increasing trend of winter and autumn discharge, whereas it is complicated for summer and spring to conclude if the trend is increasing or decreasing depending on the downscaling methods. Therefore, the uncertainty associated with the downscaling of climate simulation needs to consider, for the best estimate, the impact of climate change, with its uncertainty, on a particular basin. The study also resulted that water yield and evapotranspiration in the eastern part of the basin (sub-basins at high elevation) would be most affected by climate change. The outcomes of this study would be useful for providing guidance in water management and planning for the river basin under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.