Hardness is one of the important attributes in determining the quality of dried fruits. Hardness assessment is normally carried out by manual inspection. This method is time consuming, laborious, expensive and subjective. The objective of this study was to develop a computer vision system with a monochrome camera to classify dates based on hardness. Date samples were obtained from three different growing regions in Oman and graded into soft, semi-hard, and hard classes based on hardness. A total of 1800 date samples were imaged individually using a monochrome camera (600 dates / class). Histogram and texture features were extracted from the acquired monochrome images and used in the classification models. The overall classification accuracies in three class model (soft, semi-hard, and hard) were 66% and 71% for linear discriminant analysis (LDA) and artificial neural network (ANN), respectively. It was improved to 84% and 77% in LDA and ANN, respectively while using two class model (soft and hard (semi-hard and hard together)). The histogram features were more contributing in the date classification based on hardness than image texture features. Computer vision technique has great potential to develop online quality monitoring systems for dates and other dried fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.