For the practical use of high-capacity silicon anodes in high-energy lithium-based batteries, key issues arising from the large volume change of silicon during cycling must be addressed by the facile structural design of silicon. Herein, we discuss the zeolite-templated magnesiothermic reduction synthesis of mesoporous silicon (mpSi) (mpSi-Y, -B, and -Z derived from commercial zeolite Y, Beta, and ZSM-5, respectively) microparticles having large pore volume (0.4-0.5 cm/g), wide open pore size (19-31 nm), and small primary silicon particles (20-35 nm). With these appealing mpSi particle structural features, a series of mpSi/C composites exhibit outstanding performance including excellent cycling stabilities for 500 cycles, high specific and volumetric capacities (1100-1700 mAh g and 640-1000 mAh cm at 100 mA g), high Coulombic efficiencies (approximately 100%), and remarkable rate capabilities, whereas conventional silicon nanoparticles (SiNP)/C demonstrate limited cycle life. These enhanced electrochemical responses of mpSi/C composites are further manifested by low impedance build-up, high Li ion diffusion rate, and small electrode thickness changes after cycling compared with those of SiNP/C composite. In addition to the outstanding electrochemical properties, the low-cost materials and high-yield processing make the mpSi/C composites attractive candidates for high-performance and high-energy Li-ion battery anodes.
A new sulfur-loading method for S/mesoporous carbon cathodes coupled with a new type of carbon-coated separator is successfully demonstrated to enhance Li–S battery performances.
Discrete hollow carbon spheres (HCSs) with a high surface-to-volume ratio and distinct conducting shell have attracted immense attention as electrode materials for batteries and supercapacitors. In this study, we developed a novel and scalable method to synthesize well-defined HCSs. The HCSs were prepared using a pyrolytic soft template of styrene/acrylic acid copolymer microspheres. Sulfur could be effectively confined inside the pores of the uniform-sized HCSs (average diameter = 320 nm, shell thickness = 40-50 nm) to produce a S/HCS-65-IM (S content = 65 wt%) Li-S cathode using a modified sulfur-loading method involving solution impregnation followed by melt-diffusion (IM). S/HCS-65-IM delivered much higher capacity and greater cycling stability over 200 cycles and showed much lower impedance build up than S/HCS-65-PM prepared via the conventional melt-diffusion of a physical mixture of sulfur powder and HCSs. The sulfur utilization of S/HCS-65-IM was further improved by more than 20% by suppressing its lithium-polysulfide shuttle effect using a carbon-coated separator (CCS). The S/HCS-65-IM cathode (with CCS) also exhibited excellent cycling stability (capacity retention of >81% after 200 cycles at 0.5 C) and high rate capability with a reduced interfacial charge transfer resistance, suggesting that S/HCS-65-IM (with CCS) is a promising cathode for Li-S batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.