Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the formation of toxic amyloid-β (Aβ) oligomers and plaques. Considering that Aβ misfolding and aggregation precedes the progressive development of cognitive impairment in AD, investigating a therapeutic means by clearance of pre-existing Aβ aggregates shows promise as a viable disease-modifying treatment. Here, we report that a small molecule, necrostatin-1 (Nec-1), reduces Aβ aggregates back to non-toxic monomers in vitro and in vivo. Intravenous administration of Nec-1 reduced the levels of Aβ plaques in the brains of aged APP/PS1 double transgenic mice. In addition, Nec-1 exhibited therapeutic effects against Aβ aggregates by inhibiting Aβ-induced brain cell death in neuronal and microglial cell lines. Nec-1 also showed anti-apoptotic and anti-necroptotic effects in the cortex of aged APP/PS1 mice by reducing levels of phosphorylated-RIPK3 and Bax and increasing the levels of Bcl-2. According to our data in vitro and in silico, the methyl group of the amine in the 2-thioxo-4-imidazolidinone is the key moiety of Nec-1 that directs its activity against aggregated Aβ. Given that the accumulation of Aβ aggregates is an important hallmark of AD, our studies provide strong evidence that Nec-1 may serve a key role in the development of AD treatment.
Recent clinical approvals of brain imaging radiotracers targeting amyloid-β provided clinicians the tools to detect and confirm Alzheimer's disease pathology without autopsy or biopsy. While current imaging agents are effective in postsymptomatic Alzheimer's patients, there is much room for improvement in earlier diagnosis, hence prompting a need for new and improved amyloid imaging agents. Here we synthesized 41 novel 1,4naphthoquinone derivatives and initially discovered 14 antiamyloidogenic compounds via in vitro amyloid-β aggregation assay; however, qualitative analyses of these compounds produced conflicting results and required further investigation. Follow-up docking and biophysical studies revealed that four of these compounds penetrate the blood-brain barrier, directly bind to amyloid-β aggregates, and enhance fluorescence properties upon interaction. These compounds specifically stain both diffuse and dense-core amyloid-β plaques in brain sections of APP/PS1 double transgenic Alzheimer's mouse models. Our findings suggest 1,4-naphthoquinones as a new scaffold for amyloid-β imaging agents for early stage Alzheimer's.
Understanding the physiological implications of caging conditions for mice is crucial in improving the replicability and reliability of animal research. Individual caging of mice is known to alter mouse psychology, such as triggering depression-like symptoms in mice, suggesting that caging conditions could have negative effects on mice. Therefore, we hypothesized that individual caging could affect the physical composition of outbred mice. To investigate this, dual X-ray absorptiometry (DXA) was used to compare the mass, bone mineral content (BMC), bone mineral density (BMD), lean tissue percentage and fat tissue percentage between group and individual caged mice. We also conducted open field test to compare mouse activities in different caging conditions. Our results showed significantly reduced BMD and lean tissue percentage and significantly increased fat tissue percentage in individually-caged male mice. Furthermore, there were no differences in body mass and activity between the grouped and individual mice, suggesting that these physical alterations were not induced by group-related activity. In this study, we conclude that individual caging could alter the body composition of mice without affecting external morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.