A mobile ad-hoc network (MANET) is a temporary network of wireless mobile nodes. In a MANET, it is assumed that all of the nodes cooperate with each other to transfer data packets in a multi-hop fashion. However, some malicious nodes don’t cooperate with other nodes and disturb the network through false routing information. In this paper, we propose a prominent technique, called dual attack detection for black and gray hole attacks (DDBG), for MANETs. The proposed DDBG technique selects the intrusion detection system (IDS) node using the connected dominating set (CDS) technique with two additional features; the energy and its nonexistence in the blacklist are also checked before putting the nodes into the IDS set. The CDS is an effective, distinguished, and localized approach for detecting nearly-connected dominating sets of nodes in a small range in mobile ad hoc networks. The selected IDS nodes broadcast a kind of status packet within a size of the dominating set for retrieving the complete behavioral information from their nodes. Later, IDS nodes use our DDBG technique to analyze the collected behavioral information to detect the malicious nodes and add them to the blacklist if the behavior of the node is suspicious. Our experimental results show that the quality of the service parameters of the proposed technique outperforms the existing routing schemes.
Due to the dynamism of topology, sharing of bandwidth and constraint of resources in wireless nodes, the provision of quality of service (QoS) for routing in mobile ad hoc networks (MANETs) presents a great challenge. Security is another crucial aspect of providing QoS since the existence of malicious nodes present all kinds of threats to MANETs. Although a number of mechanisms have been proposed for protecting MANETs, most of the solutions are only effective for a particular kind of attacks or provide security at the cost of sacrificing QoS. In this paper, we propose a trust-based secure QoS routing scheme by combining social and QoS trust. The primary approach of the proposed scheme relies on mitigating nodes that exhibit various packet forwarding misbehavior and on discovering the path that ensures reliable communication through the trust mechanism. The scheme would select the best forwarding node based on packet forwarding behavior as well as capability in terms of QoS parameters, such as residual energy, channel quality, link quality, etc. We will present an adversary model for packet dropping attack against which we evaluate the proposed scheme. Simulation experiment using Network Simulator-2 (NS2) and under various network conditions show that mixing social and QoS trust parameters can greatly improve security and quality of service routing in terms of overhead, packet delivery ratio and energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.