Background: This study aimed to investigate the possibility of producing broiler meat rich in long-chain n-3 polyunsaturated fatty acids especially eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3) with preventing lipid oxidation of the produced meat by supplementing the diets with linseed oil or fish oil along with vitamin E (Vit. E) or sweet chestnut tannins (SCT) as antioxidants. A total of 144 1-day-old Cobb broiler chicks were divided into six treatments with three replicates, eight chicks each. The treatments were basal diets containing 2 g linseed oil/100 g (T1), 2 g linseed oil/100 g + 200 mg Vit. E/kg (T2) and 2 g linseed oil/100 g + 2 g SCT/ kg (T3), 2 g fish oil/100 g (T4), 2 g fish oil/100 g + 200 mg Vit. E/kg (T5), and 2 g fish oil/100 g + 2 g SCT/kg (T6) for 5 weeks. Fatty acid composition, thiobarbituric acid (TBA), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were determined. Results: Dietary 2 g fish oil/100 g elevated (P ≤ 0.001) long-chain omega-3 polyunsaturated fatty acids in broiler meat mainly EPA and DHA. At the same time, dietary fish oil resulted in a significant decrease (P ≤ 0.001) in αlinolenic acid in broiler meat (6%). However, total omega-3 fatty acids in meat were higher (P ≤ 0.001) with dietary fish oil than with dietary linseed oil. The ratio of n-6:n-3 PUFA was decreased (P ≤ 0.001) in the meat of broilers fed diets containing 2 g fish oil/100 g compared with broilers fed diets containing 2 g linseed oil/100 g. The two sources of antioxidant decreased (P ≤ 0.05) TBA value and increased (P ≤ 0.05) the DPPH radical scavenging activity in broiler meat compared to the diet without antioxidant. No significant differences observed between chicks fed 2 g SCT/kg or 200 mg Vit. E/kg on TBA and DPPH radical scavenging activity. Conclusions: It is concluded that inclusion of 2 g fish oil/100 g in broiler diets elevated levels of long-chain omega-3 PUFA mainly EPA and DHA, but decreased n-6:n-3 ratio. Moreover, the addition of 2 g SCT/kg diet or 200 mg Vit. E/kg diet as antioxidant sources inhibited lipid oxidation and enhanced antioxidant activity value in broiler meat, and each of them had the same effect.
Early life heat stress negatively affects rabbit production and well‐being. However, the physiological response to acute heat stress in later life is not clearly defined. The present study aims to investigate the effects of early and late heat stress at 36°C on some blood constituents, antioxidant enzymes activity in the blood, and muscle in New Zealand white and Baladi Black rabbits. A total of sixty post‐weaning rabbits of each breed were randomly divided into two groups; control groups (NZWC and BBC) and early heat‐stressed groups for six hours at 36 ± 1°C and 62% relative humidity (RH) (NZWT and BBT groups). After heat stress, six rabbits from each group were slaughtered for blood and muscle tissue collection. The surviving rabbits were kept at 28 ± 1°C and 40% RH till 13 weeks of age. At the end of 13 weeks, all rabbits were exposed to late heat stress as precious described to perform four groups: single late stressed groups; NZWC2, BBC2, and double stressed groups; NZWT2 and BBT2. After late heat stress, six rabbits from each group were slaughtered for blood and muscle tissue collection. The early and late heat stress caused a significant reduction in the blood creatine kinase, lactate dehydrogenase, and high‐density lipoprotein and antioxidant enzymes' activity in blood and muscle of both NZW and BB rabbits compared with the control groups. While, the blood total cholesterol, triglycerides, total lipids levels, and lipid peroxidation activity in blood and muscle were significantly increased due to the early and late heat‐stressed both breeds compared with the control groups. It could be concluded that the early heat stress at 36°C has negative effects on several physiological indicators and antioxidant activities in the blood and muscle of NZW and BB rabbits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.