Accurate detection of white matter lesions in 3D Magnetic Resonance Images (MRIs) of patients with Multiple Sclerosis is essential for diagnosis and treatment evaluation of MS. It is strenuous for the optimal treatment of the disease to detect early MS and estimate its progression. In this study, we propose efficient Multiple Sclerosis detection techniques to improve the performance of a supervised machine learning algorithm and classify the progression of the disease. Detection of MS lesions become more intricate due to the presence of unbalanced data with a very small number of lesions pixel. Our pipeline is evaluated on MS patients data from the Laboratory of Imaging Technologies. Fluid-attenuated inversion recovery (FLAIR) series are incorporated to introduce a faster system alongside maintaining readability and accuracy. Our approach is based on convolutional neural networks (CNN). We have trained the model using transfer learning and used softmax as an activation function to classify the progression of the disease. Our results significantly show the effectiveness of the usage of MRI of MS lesions. Experiments on 30 patients and 100 healthy brain MRIs can accurately predict disease progression. Manual detection of lesions by clinical experts is complicated and time-consuming as a large amount of MRI data is required to analyze. We analyze the accuracy of the proposed model on the dataset. Our approach exhibits a significant accuracy rate of up to 98.24%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.