Bimetallic Fe/Ni nanoparticles were synthesized and used for the removal of profenofos organophosphorus pesticide from aqueous solution. These novel bimetallic nanoparticles (Fe/Ni) were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The effect of the parameters of initial pesticide concentration, pH of the solution, adsorbent dosage, temperature, and contact time on adsorption was investigated. The adsorbent exhibited high efficiency for profenofos adsorption, and equilibrium was achieved in 8 min. The Langmuir, Freundlich, and Temkin isotherm models were used to determine equilibrium. The Langmuir model showed the best fit with the experimental data (R 2 = 0.9988). Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were tested to determine absorption kinetics. The pseudo-second-order model provided the best correlation with the results (R 2 = 0.99936). The changes in the thermodynamic parameters of Gibb's free energy, enthalpy, and entropy of the adsorption process were also evaluated. Thermodynamic parameters indicate that profenofos adsorption using Fe/Ni nanoparticles is a spontaneous and endothermic process. The value of the activation energy (E a = 109.57 kJ/mol) confirms the nature of the chemisorption of profenofos onto Fe/Ni adsorbent.
This study synthesized magnetic nanoparticles (Fe(3)O(4)) immobilized on activated carbon (AC) and used them as an effective adsorbent for Cu(II) removal from aqueous solution. The effect of three parameters, including the concentration of Cu(II), dosage of Fe(3)O(4)/AC magnetic nanocomposite and pH on the removal of Cu(II) using Fe(3)O(4)/AC nanocomposite were studied. In order to examine and describe the optimum condition for each of the mentioned parameters, Taguchi's optimization method was used in a batch system and L9 orthogonal array was used for the experimental design. The removal percentage (R%) of Cu(II) and uptake capacity (q) were transformed into an accurate signal-to-noise ratio (S/N) for a 'larger-the-better' response. Taguchi results, which were analyzed based on choosing the best run by examining the S/N, were statistically tested using analysis of variance; the tests showed that all the parameters' main effects were significant within a 95% confidence level. The best conditions for removal of Cu(II) were determined at pH of 7, nanocomposite dosage of 0.1 gL(-1) and initial Cu(II) concentration of 20 mg L(-1) at constant temperature of 25 °C. Generally, the results showed that the simple Taguchi's method is suitable to optimize the Cu(II) removal experiments.
The present study immobilized nanoscale zero-valent iron (nZVI) on multi-walled carbon nanotubes (MWCNTs) to enhance the reactivity of nZVI and prevent its aggregation. This novel composite (nZVI/MWCNT) was characterized by scanning electron microscopy and X-ray diffraction. The results showed that nZVI particles dispersed on the surface of the MWCNTs. The composite was used to remove the diazo dye Direct Red 23 from aqueous solution. The effects of nZVI to MWCNT mass ratio, nanocomposite content, solution pH, initial dye concentration and temperature were studied. The optimum nZVI/MWCNT mass ratio was 1:3. Batch experiments suggest that degradation efficiency decreased as the initial dye concentration increased and increased as the nanocomposite content increased, decreasing the pH from 8 to 4. The reaction followed a pseudo-first-order model under the operational conditions investigated in this study.
This study synthesized sulfanilic acid (SA)-modified TiO 2 nanocomposites and used them as an effective photocatalyst for Direct yellow 86 diazo dye removal from aqueous solution. This novel nanocomposite (SA/TiO 2 ) was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy and X-ray diffraction. The results showed the formation of SA/TiO 2 nanocatalyst. The photocatalytic activity of the modified photocatalyst was examined by degradation of Direct yellow 86 (GE) under UV and visible light. The effects of five parameters, the concentration of GE, dosage of SA/TiO 2 nanocomposite, UV light irradiation intensity, pH and visible light illumination, on the removal of GE using SA/TiO 2 nanocomposite were studied. The highest GE removal was determined at pH of 9, nanocomposite dosage of 0.15 g/l and initial GE concentration of 50 mg/l at the constant temperature of 25 W C. However, the results showed that the GE removal rate increased as the UV light intensity increased. In addition, an enhancement in the photodegradation rate was observed with visible light illumination. The adsorption trends of GE at various initial concentrations followed the Langmuir isotherm model.Nafiseh Mansouriieh (corresponding author) Young Researchers and Elite Club, Tabriz Branch,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.