Immunosensors based on gold nanoparticles and reduced graphene oxide (AuNPs/rGO)-modified screen-printed electrodes (SPEs) were successfully synthesized using an electrochemical deposition method. The modified SPEs were characterized using a field emission scanning electron microscope (FESEM) and Raman spectroscopy to analyze the morphology and composition of AuNPs and rGO. Both the FESEM and Raman spectroscopy revealed that the AuNPs were successfully anchored on the thin film of rGO deposited on the surface of the SPEs. Characterization with a ferri-ferrocyanide couple [Fe(CN)6(3-/4-)] showed that the electron transfer kinetic between the analyte and electrode was enhanced after the modification with the AuNPs/rGO composite on the electrode surface, in addition to increasing the effective surface area of the electrode. The modified SPE was immobilized with a sandwich type immunosensor to mimic the ELISA (enzyme-linked immunosorbent assay) immunoassay. The modified SPE that was fortified with the sandwich type immunosensor exhibited double electrochemical responses in the detection of carcinoembryonic antigen (CEA), with linear ranges of 0.5-50 ng/mL and 250-2000 ng/mL and limits of detection of 0.28 ng/mL and 181.5 ng/mL, respectively.
Neste trabalho, a interação de doxorrubicina com DNA (obtido de timo de bezerro) em fita dupla foi investigada através de técnicas de espectrofotometria UV-Vis, voltametria e espectrofluorometria, usando azul de metrileno (MB) como marcador. O comportamento voltamétrico da doxorrubicina foi investigado em eletrodo de carbono vítreo usando voltametria de pulso diferencial. A doxorrubicina é reduzida, produzindo um pico de redução. Os dois estudos, espectrofotometria UV-Vis e voltametria de pulso diferencial, confirmam a reação de intercalação. Os resultados mostraram que a doxorrubicina e a molécula de MB foram intercaladas na dupla hélice do DNA. A constante de ligação aparente de doxorrubicina com DNA foi 3,2 × 10 4 L mol -1 . O sinal de fluorescência da doxorrubicina e azul de metileno é suprimido com a adição de DNA. A equação de Stern-Volmer baseou-se na supressão do sinal de fluorescência da doxorrubicina.In this work, the interaction of doxorubicin with calf thymus double strand Deoxyribonucleic acid (ds-DNA) has been investigated with the use of Methylene Blue (MB) dye as a probe by the application of UV-Vis spectrophotometry, voltammetry and spectrofluorometry. The voltammetric behavior of doxorubicin has been investigated at glassy carbon electrode using differential pulse voltammetry. Doxorubicin is reduced, yielding one reduction peak. Both UV-Vis spectrophotometry and differential pulse voltammetry studies confirm the intercalation reaction. The results showed that both doxorubicin and the MB molecule could intercalate into the double helix of the DNA. The apparent binding constant of doxorubicin with DNA has been found to be 3.2 × 10 4 L mol -1 . The fluorescence signal of doxorubicin and methylene blue was quenched with DNA addition. The Stern-Volmer equation was plotted based on quenching fluorescence signal of doxorubicin.Keywords: doxorubicin, DNA, chemotherapy, spectrophotometry, voltammetry, spectrofluorometry IntroductionStudy of interactions between drugs and DNA is very interesting and significant not only in understanding the mechanism of interaction, but also for the design of new drugs. 1,2 However mechanism of interactions between drug molecules and DNA is still relatively little known. It is necessary to introduce more simple methods for investigating the mechanism of interaction. By understanding the mechanism of interaction, designing of new DNA-targeted drugs and the screening of these in vitro will be possible.A great variety of substances, including several agents of importance in cancer chemotherapy, 3 are known to bind to DNA by intercalation. 4 Attention has been concentrated on the classical intercalating drugs, acridines and ethidium bromide. [4][5][6] Studies on the binding of various dyes, drugs and antibiotics to DNA and chromatin have contributed to the understanding of the structure of these macromolecules, 6-14 and have suggested possible mechanisms of the biological activity of some drugs. 3 Molecular models of the intercalation of some drugs into DNA have been describ...
In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin (DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode (Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V (vs. Ag/AgCl) in Britton Robinson (B-R) buffer (pH 4.0, 0.1 M). The electrochemical parameters including pH, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05–4.0 µg/mL with the detection limit of 0.002 µg/mL. The number of electron transfers (n) and electron transfer-coefficient (α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of doxorubicin in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant (Kb) of 1.12×105 L/mol.
The first portable electrochemical sensor was constructed for monitoring of thiamphenicol residue in fresh milk based on electro-oxidation of thiamphenicol on the surface of CNTs and AuNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.