Which antigen-presenting cells are involved in Tfh responses in humans remains unclear. Durand et al. show that human tonsil cDC2 and CD14+ macrophages provide Tfh polarizing signals to CD4+ T cells in distinct locations within tonsil, playing sequential roles in Tfh induction.
We have previously shown that B6 congenic mice with a New Zealand Black chromosome 1 (c1) 96-100 cM interval produce anti-nuclear Abs and that at least two additional genetic loci are required to convert this subclinical disease to fatal glomerulonephritis in mice with a c1 70-100 cM interval (c1(70-100)). Here we show that the number of T follicular helper and IL-21-, IFN-γ-, and IL-17-secreting CD4+ T cells parallels disease severity and the number of susceptibility loci in these mice. Immunization of pre-autoimmune mice with OVA recapitulated these differences. Differentiation of naïve T cells in-vitro under polarizing conditions and in-vivo following adoptive transfer of OVA-specific TCR transgenic cells into c1(70-100) or B6 recipient mice, revealed T cell functional defects leading to increased differentiation of IFN-γ- and IL-17-producing cells in the 96-100 cM and 88-96 cM intervals, respectively. However, in-vivo enhanced differentiation of pro-inflammatory T cell subsets was predominantly restricted to c1(70-100) recipient mice, which demonstrated altered dendritic cell function, with increased production of IL-6 and IL-12. The data provide support for the role of pro-inflammatory T cells in the conversion of subclinical disease to fatal autoimmunity and highlight the importance of synergistic interactions between individual susceptibility loci in this process.
Invariant NKT (iNKT) cells are innate lymphocytes that respond to glycolipids presented by the MHC class Ib molecule CD1d and are rapidly activated to produce large quantities of cytokines and chemokines. iNKT cell development uniquely depends on interactions between double-positive thymocytes that provide key homotypic interactions between signaling lymphocyte activation molecule (SLAM) family members. However, the role of SLAM receptors in the differentiation of iNKT cell effector subsets and activation has not been explored. In this article, we show that C57BL/6 mice containing the New Zealand Black locus have profound alterations in Ly108, CD150, and Ly9 expression that is associated with iNKT cell hyporesponsiveness. This loss of function was only apparent when dendritic cells and iNKT cells had a loss of SLAM receptor expression. Using small interfering RNA knockdowns and peptide-blocking strategies, we demonstrated that-Ly108 interactions between dendritic cells and iNKT cells are critical for robust activation. LY108 costimulation similarly increased human iNKT cell activation. Thus, in addition to its established role in iNKT cell ontogeny, Ly108 regulates iNKT cell function in mice and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.