In this paper, we address the problem of optimization of trajectories for a new class of biped robot. The knees of this biped are similar as the anthropomorphic one and have a rolling contact between the femur and the tibia. The robot has seven mechanical links and six actuators. The walking gait considered is a succession of single support phase (SSP) and impact of the mobile foot with the ground. Cubic uniform spline functions defined on a time interval express the gait for one step. An energy consumption function and a torques quadratic function are used to compare the new robot with anthropomorphic knees to a conventional robot with revolute joint knees. The minimization of the criteria is made with simplex algorithm. The physical constraints concerning the ZMP and the mobile foot behavior are respectively checked to make a step. Simulation results show that the energy consumption of the new biped with rolling knee contact is less than that of the robot with revolute joint knees
Recently, underactuated bipeds with pointed feet have been studied to achieve dynamic and energy eff cient robot walking patterns. However, these studies usually simplify a robot torso as one link, which is different from a human torsos containing 33 vertebrae. In this paper, therefore, we study the optimal walking of a 6-link planar biped with a segmented torso derived from its 5-link counterpart while ensuring that two models are equivalent when the additional torso joint is locked. For the walking, we suppose that each step is composed of a single support phase and an instantaneous double support phase, and two phases are connected by a plastic impact mapping. In addition, the controlled outputs named symmetry outputs capable of generating exponentially stable orbits using hybrid zero dynamics, are adopted to improve physical interpretation. The desired outputs are parameterized by Bézier functions, with 5-link robot having 16 parameters to optimize and 6-link robot having 19 parameters. According to our energy criterion, the segmented torso structure may reduce energy consumption up to 8% in bipedal walking, and the maximum energy saving is achieved at high walking speeds, while leaving the criteria at low walking speeds remain similar for both robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.