Tunnel-field-effect transistors (TFETs) operate by quantum band-to-band tunnelling and display a steeper subthreshold slope than MOSFETs which substantially diminishes the standby current. This work explores the TFET-based SRAM utilisation for Low STandby Power applications. An 8 T TFET SRAM cell operating at V DD = 1 V, which, in contrast to other 6 T TFET SRAMs, is write-disturb-and halfselection-free is proposed. Simulations based on 30 nm p-and n-TFETs models relying on I D , C GS , C GD vs. V GS , and V DS look-up tables extracted from TCAD, indicate that the proposed cell has a Read SNM and a Write SNM of 120 and 200 mV, respectively, which are well above state of the art values repotted in the literature. When utilised in an 128 × 128-bit memory array the proposed cell enables read and write operation at 3.84 GHz and 806 MHz, respectively, and a cell leakage of less than 2fA/bit, which makes it an excellent choice for Internet of Things applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.