Metal–organic frameworks derived metal chalcogenides as a new class of active materials can abolish the existing challenges in supercapacitors with their large electroactive sites and enhanced electrochemical conductivities. With its adequate conductivity and electrochemical properties, tellurium based metal chalcogenide electrodes can deliver better electrochemical performances than other chalcogenides. Herein, CuCoTe honeycomb‐like nanosheets are grown on nickel foam (CuCoTe HNSs/NF) and then CuCo layered double hydroxides are successively coated on them (CTC HLSs/NF). The CTC HLSs/NF electrode exhibits tremendous performance with its high specific capacity of 399 mAh g−1 at 7 A g−1 of current density and good capacity retention (81.3%) after 3000 cycles. Finally, CTC HLSs/NF electrode is utilized for the hybrid supercapacitor (HSC) assembly along with activated carbon coated nickel foam in an aqueous electrolyte. The fabricated HSC shows high energy density (214.7 Wh kg−1) and power density (40 kW kg−1). Moreover, the device retains 96.3% of its capacitance at the end of the 5000th cycle, showing its high stability. Owing to their unique morphology and superior electrochemical properties, the present method of fabrication and selected materials can address the issues faced by electrochemical capacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.