The experimental study of heat transfer coefficient of nanofluid plays a significant role in improving the heat transfer rate of the heat exchanger. The research was conducted in a natural convection heat transfer apparatus by suspending Al2O3 nanoparticle in a base fluid of Water-Ethylene glycol mixture. The effects of heat input (A), nanoparticle volume fraction (B), and base fluid concentration (C) on experimental heat transfer coefficient (hexpnf) were studied. By the results obtained by MINITDesign software 23 full factorial design matrix, 16 experimental runs were performed with the lower and higher level of input factors. The levels for heat input are 10 and 100 W; nanoparticle volume fraction is 0.1 and 1 volume% and for base fluid concentration is 30 and 50 volume% of Ethylene Glycol in water. From the obtained experimental results residual plots, Pareto chart, contour plot and 3D surface plots were drawn. It can be found from the study that the experimental heat transfer coefficient showed highest enhancement with high level of nanoparticle volume fraction and moderate enhancement with high level of heat input and slight enhancement with base fluid concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.