There is growing incentive to reduce the power consumed by large-scale data centers that host online services such as banking, retail commerce, and gaming. Virtualization is a promising approach to consolidating multiple online services onto a smaller number of computing resources. A virtualized server environment allows computing resources to be shared among multiple performanceisolated platforms called virtual machines. By dynamically provisioning virtual machines, consolidating the workload, and turning servers on and off as needed, data center opera-A preliminary version of this tors can maintain the desired quality-of-service (QoS) while achieving higher server utilization and energy efficiency. We implement and validate a dynamic resource provisioning framework for virtualized server environments wherein the provisioning problem is posed as one of sequential optimization under uncertainty and solved using a lookahead control scheme. The proposed approach accounts for the switching costs incurred while provisioning virtual machines and explicitly encodes the corresponding risk in the optimization problem. Experiments using the Trade6 enterprise application show that a server cluster managed by the controller conserves, on average, 22% of the power required by a system without dynamic control while still maintaining QoS goals. Finally, we use trace-based simulations to analyze controller performance on server clusters larger than our testbed, and show how concepts from approximation theory can be used to further reduce the computational burden of controlling large systems.
This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup--up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration.
Spline-based deformable registration methods are quite popular within the medical-imaging community due to their flexibility and robustness. However, they require a large amount of computing time to obtain adequate results. This paper makes two contributions towards accelerating B-spline-based registration. First, we propose a grid-alignment scheme and associated data structures that greatly reduce the complexity of the registration algorithm. Based on this grid-alignment scheme, we then develop highly data parallel designs for B-spline registration within the stream-processing model, suitable for implementation on multi-core processors such as graphics processing units (GPUs). Particular attention is focused on an optimal method for performing analytic gradient computations in a data parallel fashion. CPU and GPU versions are validated for execution time and registration quality. Performance results on large images show that our GPU algorithm achieves a speedup of 15 times over the single-threaded CPU implementation whereas our multi-core CPU algorithm achieves a speedup of 8 times over the single-threaded implementation. The CPU and GPU versions achieve near-identical registration quality in terms of RMS differences between the generated vector fields.
There is growing incentive to reduce the power consumed by large-scale data centers that host online services such as banking, retail commerce, and gaming. Virtualization is a promising approach to consolidating multiple online services onto a smaller number of computing resources. A virtualized server environment allows computing resources to be shared among multiple performance-isolated platforms called virtual machines. By dynamically provisioning virtual machines, consolidating the workload, and turning servers on and off as needed, data center operators can maintain the desired quality-of-service (QoS) while achieving higher server utilization and energy efficiency. We implement and validate a dynamic resource provisioning framework for virtualized server environments wherein the provisioning problem is posed as one of sequential optimization under uncertainty and solved using a lookahead control scheme. The proposed approach accounts for the switching costs incurred while provisioning virtual machines and explicitly encodes the corresponding risk in the optimization problem. Experiments using the Trade6 enterprise application show that a server cluster managed by the controller conserves, on average, 22% of the power required by a system without dynamic control while still maintaining QoS goals. Finally, we use trace-based simulations to analyze controller performance on server clusters larger than our testbed, and show how concepts from approximation theory can be used to further reduce the computational burden of controlling large systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.