Chloroplasts fuel plant development and growth by converting solar energy into chemical energy. They mature from proplastids through the concerted action of genes in both the organellar and the nuclear genome. Defects in such genes impair chloroplast development and may lead to pigment-deficient seedlings or seedlings with variegated leaves. Such mutants are instrumental as tools for dissecting genetic factors underlying the mechanisms involved in chloroplast biogenesis. Characterization of the green-white variegated albostrians mutant of barley (Hordeum vulgare) has greatly broadened the field of chloroplast biology, including the discovery of retrograde signaling. Here, we report identification of the ALBOSTRIANS gene HvAST (also known as Hordeum vulgare CCT Motif Family gene 7, HvCMF7) by positional cloning as well as its functional validation based on independently induced mutants by Targeting Induced Local Lesions in Genomes (TILLING) and RNA-guided clustered regularly interspaced short palindromic repeats-associated protein 9 endonucleasemediated gene editing. The phenotypes of the independent HvAST mutants imply residual activity of HvCMF7 in the original albostrians allele conferring an imperfect penetrance of the variegated phenotype even at homozygous state of the mutation. HvCMF7 is a homolog of the Arabidopsis (Arabidopsis thaliana) CONSTANS, CO-like, and TOC1 (CCT) Motif transcription factor gene CHLOROPLAST IMPORT APPARATUS2, which was reported to be involved in the expression of nuclear genes essential for chloroplast biogenesis. Notably, in barley we localized HvCMF7 to the chloroplast, without any clear evidence for nuclear localization.
BackgroundAlthough customized endonucleases [transcription activator-like effector nucleases (TALENs) and RNA-guided endonucleases (RGENs)] are known to be effective agents of mutagenesis in various host plants, newly designed endonuclease constructs require some pre-validation with respect to functionality before investing in the creation of stable transgenic plants.ResultsA simple, biolistics-based leaf epidermis transient expression test has been developed, based on reconstituting the translational reading frame of a mutated, non-functional yfp reporter gene. Quantification of mutation efficacy was made possible by co-bombarding the explant with a constitutive mCherry expression cassette, thereby allowing the ratio between the number of red and yellow fluorescing cells to serve as a metric for mutation efficiency. Challenging either stable mutant alleles of a compromised version of gfp in tobacco and barley or the barley MLO gene with TALENs/RGENs confirmed the capacity to induce site-directed mutations.ConclusionsA convenient procedure to assay the cleavage activity of customized endonucleases has been established. The system is independent of the endonuclease platform and operates in both di- and monocotyledonous hosts. It not only enables the validation of a TALEN/RGEN’s functionality prior to the creation of stable mutants, but also serves as a suitable tool to optimize the design of endonuclease constructs.Electronic supplementary materialThe online version of this article (doi:10.1186/s13007-016-0118-6) contains supplementary material, which is available to authorized users.
Transcription activator-like effector nucleases open up new opportunities for targeted mutagenesis in eukaryotic genomes. Similar to zinc-finger nucleases, sequence-specific DNA-binding domains can be fused with effector domains like the nucleolytically active part of FokI to induce double-strand breaks and thereby modify the host genome on a predefined target site via nonhomologous end joining. More sophisticated applications of programmable endonucleases involve the use of a DNA repair template facilitating homology-directed repair (HDR) so as to create predefined rather than random DNA sequence modifications. The aim of this study was to demonstrate the feasibility of editing the barley genome by precisely modifying a defined target DNA sequence resulting in a predicted alteration of gene function. We used gfp-specific transcription activator-like effector nucleases along with a repair template that, via HDR, facilitates conversion of gfp into yfp, which is associated with a single amino acid exchange in the gene product. As a result of co-bombardment of leaf epidermis, we detected yellow fluorescent protein accumulation in about three of 100 mutated cells. The creation of a functional yfp gene via HDR was unambiguously confirmed by sequencing of the respective genomic site. In addition to the allele conversion accomplished in planta, a readily screenable marker system is introduced that might be useful for optimization approaches in the field of genome editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.