The use of organic solvents for the preparation of nanofibers are challenged due to their volatile and hazardous behavior. Recently deep eutectic solvents (DES) are widely recognized as non-volatile and non-hazardous solvents which never been utilized directly for nanofabrication via electrospinning. Here, we present the preparation of Zein nanofibers using deep eutectic solvents (DES-Zein). The DES-Zein nanofibers were produced at an optimized polymer concentration of 45% (w/w) with pH 7.3 and electroconductivity 233 mS cm−1. DES-Zein nanofibers showed aligned to tweed like cedar leaf morphology tuned by varying the spreading angle from 0° to 90°. In contrast to hydrophobic conventional Zein nanofibers, DES-Zein nanofibers showed super hydrophilic character and about 200 nm finer average diameter. The proposed method of preparing Zein nanofibers using DES opens a new door to continuous electrospinning with tunable morphology, having potential to be used for environmental and biomedical applications.
Cellulose is one of the most hydrophilic polymers with sufficient water holding capacity but it is unstable in aqueous conditions and it swells. Cellulose itself is not suitable for electrospun nanofibers’ formation due to high swelling, viscosity, and lower conductivity. Carboxymethyl cellulose (CMC) is also super hydrophilic polymer, however it has the same trend for nanofibers formation as that of cellulose. Due to the above-stated reasons, applications of CMC are quite limited in nanotechnology. In recent research, loading of CMC was optimized for electrospun tri-component polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and carboxymethyl cellulose (CMC) nanofibers aim at widening its area of applications. PVA is a water-soluble polymer with a wide range of applications in water filtration, biomedical, and environmental engineering, and with the advantage of easy process ability. However, it was observed that only PVA was not sufficient to produce PVA/CMC nanofibers via electrospinning. To increase spinnability of PVA/CMC nanofibers, PVP was selected as the best available option because of its higher conductivity and water solubility. Weight ratios of CMC and PVP were optimized to produce uniform nanofibers with continuous production as well. It was observed that at a weight ratio of PVP 12 and CMC 3 was at the highest possible loading to produce smooth nanofibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.