The honeybee has been the most important insect species for study of social behavior. The recently released draft genomic sequence for the bee will accelerate honeybee behavioral genetics. Although we lack sufficient tools to manipulate this genome easily, quantitative trait loci (QTLs) that influence natural variation in behavior have been identified and tested for their effects on correlated behavioral traits. We review what is known about the genetics and physiology of two behavioral traits in honeybees, foraging specialization (pollen versus nectar), and defensive behavior, and present evidence that map-based cloning of genes is more feasible in the bee than in other metazoans. We also present bioinformatic analyses of candidate genes within QTL confidence intervals (CIs). The high recombination rate of the bee made it possible to narrow the search to regions containing only 17-61 predicted peptides for each QTL, although CIs covered large genetic distances. Knowledge of correlated behavioral Naturwissenschaften (2007) 94:247-267
The Arabidopsis thaliana histone H2A gene HTA1 is essential for efficient transformation of Arabidopsis roots by Agrobacterium tumefaciens. Disruption of this gene in the rat5 mutant results in decreased transformation. In Arabidopsis, histone H2A proteins are encoded by a 13-member gene family. RNA encoded by these genes accumulates to differing levels in roots and whole plants; HTA1 transcripts accumulate to levels up to 1000-fold lower than do transcripts of other HTA genes. We examined the extent to which other HTA genes or cDNAs could compensate for loss of HTA1 activity when overexpressed in rat5 mutant plants. Overexpression of all tested HTA cDNAs restored transformation competence to the rat5 mutant. However, only the HTA1 gene, but not other HTA genes, could phenotypically complement rat5 mutant plants when expressed from their native promoters. Expression analysis of HTA promoters indicated that they had distinct but somewhat overlapping patterns of expression in mature plants. However, only the HTA1 promoter was induced by wounding or by Agrobacterium infection of root segments. Our data suggest that, with respect to Agrobacterium-mediated transformation, all tested histone H2A proteins are functionally redundant. However, this functional redundancy is not normally evidenced because of the different expression patterns of the HTA genes.
We previously cloned and characterized a novel jacalin-like lectin gene from wheat (Triticum aestivum) plants that responds to infestation by Hessian fly (Mayetiola destructor) larvae, a major dipteran pest of this crop. The infested resistant plants accumulated higher levels of Hfr-1 (for Hessian fly-responsive gene 1) transcripts compared with uninfested or susceptible plants. Here, we characterize the soluble and active recombinant His 6 -HFR1 protein isolated from Escherichia coli. Functional characterization of the protein using hemagglutination assays revealed lectin activity. Glycan microarray-binding assays indicated strong affinity of His 6 -HFR1 to Mana1-6(Mana1-3)Man trisaccharide structures. Resistant wheat plants accumulated high levels of HFR1 at the larval feeding sites, as revealed by immunodetection, but the avirulent larvae were deterred from feeding and consumed only small amounts of the lectin. Behavioral studies revealed that avirulent Hessian fly larvae on resistant plants exhibited prolonged searching and writhing behaviors as they unsuccessfully attempted to establish feeding sites. During His 6 -HFR1 feeding bioassays, Drosophila melanogaster larvae experienced significant delays in growth and pupation, while percentage mortality increased with progressively higher concentrations of His 6 -HFR1 in the diet. Thus, HFR1 is an antinutrient to dipteran larvae and may play a significant role in deterring Hessian fly larvae from feeding on resistant wheat plants.
Efficient transformation of numerous important crops remains a challenge, due predominantly to our inability to stimulate growth of transgenic cells capable of producing plants. For years, this difficulty has been partially addressed by tissue culture strategies that improve regeneration either through somatic embryogenesis or meristem formation. Identification of genes involved in these developmental processes, designated here as morphogenic genes, provides useful tools in transformation research. In species from eudicots and cereals to gymnosperms, ectopic overexpression of genes involved in either embryo or meristem development has been used to stimulate growth of transgenic plants. However, many of these genes produce pleiotropic deleterious phenotypes. To mitigate this, research has been focusing on ways to take advantage of growth-stimulating morphogenic genes while later restricting or eliminating their expression in the plant. Methods of controlling ectopic overexpression include the use of transient expression, inducible promoters, tissue-specific promoters, and excision of the morphogenic genes. These methods of controlling morphogenic gene expression have been demonstrated in a variety of important crops. Here, we provide a review that highlights how ectopic overexpression of genes involved in morphogenesis has been used to improve transformation efficiencies, which is facilitating transformation of numerous recalcitrant crops. The use of morphogenic genes may help to alleviate one of the bottlenecks currently slowing progress in plant genome modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.