Turning is a widely used metal removal process in manufacturing industry that involves generation of high cutting forces and temperature. Lubrication becomes critical to minimize the effects of these forces and temperature on cutting tool and workpiece. The conventional cutting fluids employed in machining have certain limitations with regard to their use for ecological and economic reasons. Development of lubricants that are eco friendly is acquiring importance. In this context, application of solid lubricants has proved to be a feasible alternative to the conventional cutting fluids. In the present work, Boric Acid is used as a lubricant in turning process. Variations in cutting force, tool wear, tool temperature and surface roughness are studied under different machining conditions. The results indicate that there is considerable improvement in the machining performance with Boric Acid assisted machining compared to dry and wet machining
Nickel alloys have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Micro Plasma Arc Welding (PCMPAW) was found beneficial due to its advantages over the conventional continuous current process. The quality of welded joint depends on the grain size, hardness and ultimate tensile strength, which have to be properly controlled and optimized to ensure better economy and desirable mechanical characteristics of the weld. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to grain size, grain size and ultimate tensile strength in PCMPAW of Inconel 625 sheets. The experiments were conducted based on a five factor, five level central composite rotatable design matrix. A Genetic Algorithm (GA) was developed to optimize the process parameters for achieving the desired grain size, hardness and ultimate tensile strength.
Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace, and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Microplasma Arc Welding (PCMPAW) was found beneficial due to its advantages over the conventional continuous current process. The quality of welded joint depends on the grain size, hardness, and ultimate tensile strength, which have to be properly controlled and optimized to ensure better economy and desirable mechanical characteristics of the weld. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to grain size, and ultimate tensile strength in PCMPAW of AISI 304L sheets. The experiments were conducted based on a five-factor, five-level central composite rotatable design matrix. A genetic algorithm (GA) was developed to optimize the process parameters for achieving the desired grain size, hardness, and ultimate tensile strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.