This work describes the removal of three pharmaceuticals, namely ceftriaxone sodium (CFX), diclofenac sodium (DCF) and atenolol (ATN) from water using magnetic poly (styrene-2-acrylamido-2-methyl propanesulfonic acid) (St-AMPS) adsorbent. This adsorbent was characterized by several techniques such as FTIR, TEM, TGA, VSM and DLS. Three kinetic models, pseudo-first-order, pseudo-secondorder and intra-particle diffusion models were used to study the adsorption kinetics.The results showed that the adsorption kinetics of pharmaceuticals onto magnetic poly (St-AMPS) adsorbent followed the pseudo-second-order model and were relatively rapid. In addition, it was found that the intra-particle diffusion was not the sole rate-controlling step and the adsorption of pharmaceuticals onto adsorbent occurred via two steps adsorption process. The experimental data were fitted with three isotherm models including Freundlich, Langmuir and Dubinin-Radushkevich (D-R). It was found that the adsorption of pharmaceuticals onto magnetic poly (St-AMPS) nanoparticles was the best described by the Langmuir model. Maximum adsorption capacities of 150.602, 47.824 and 119.904 mg/g were obtained for DCF, ATN and CFX, respectively. Also the obtained free energy from D-R isotherm (6.19, 4.93 and 6.45 kJ/mol for DCF, ATN and CFX respectively) indicated that the adsorption process was a physiosorption. Magnetic poly (St-AMPS) adsorbent could be recycled for removal of CFX, DCF and ATN by alkaline aqueous solution (pH 8). Therefore, this adsorbent can act as a promising adsorbent for water treatment processes.
K E Y W O R D Sadsorption, magnetic separation, pharmaceutical, poly (styrene-2-acrylamido-2-methyl propanesulfonic acid), regeneration
Sulfonic acid functionalized mesoporous magnetite nanoparticles as an efficient, heterogeneous and recyclable catalyst for the synthesis of aminonaphtols and β-amino carbonyls. Advantages: good yields, rapid reaction, solvent-free conditions and room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.