Background: Recent studies point toward the possible regulatory roles of two lncRNAs; metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and taurine upregulated gene 1 (TUG1) in the pathogenesis of obesity-related disorders and regulation of lipogenesis and adipogenesis. In an attempt to understand the molecules involved in human obesity pathogenesis, we aimed to evaluate the expression of MALAT1 and TUG1 in visceral adipose tissues (VAT) and subcutaneous adipose tissues (SAT) of obese women, as compared to normal-weight women. The mRNA expression of possible target genes including peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator-1 alpha (PGC1α), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) which are involved in adipogenesis and lipogenesis were also examined. Methods: This study was conducted on 20 obese [body mass index (BMI) ≥ 30 kg/m 2] female participants and 19 normal-weight (BMI < 25 kg/m 2) female participants. Real-time PCR was performed to investigate the mRNA expression of the above-mentioned genes in VAT and SAT from all participants. Results: The results showed lower mRNA levels of TUG1 in both the VAT and SAT of obese women, compared to normal-weight women. Furthermore, TUG1 expression in SAT positively correlated with BMI, waist circumference (WC), hip circumference, HOMA-IR, and insulin levels, eGFR value, creatinine levels, and hs-CRP in all participants independent of age and HOMA-IR. However, VAT mRNA expression of TUG1 had a positive correlation with obesity indices and HOMA-IR and insulin levels in the whole population. Moreover, SAT mRNA level of TUG1 was positively correlated with SAT gene expression of PGC1α, SREBP-1c, FAS, and ACC independent of age and HOMA-IR. Although mRNA expression of MALAT1 did not differ between two groups for any tissue, it was positively correlated with SAT mRNA levels of SREBP-1c, PPARγ, and their targets; FAS and ACC, as well as with VAT mRNA levels of PGC1α. Conclusions: It seems likely that TUG1 with distinct expression pattern in VAT and SAT are involved in the regulation of lipogenic and adipogenic genes and obesity-related parameters. However, more studies are necessary to establish this concept.
Objective A better understanding of mechanisms regulating lipogenesis and adipogenesis is needed to overcome the obesity pandemic. We aimed to study the relationship of the transcript levels of peroxisome proliferator activator receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBP-α), liver X receptor (LXR), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from obese and normal-weight women with a variety of anthropometric indices, metabolic and biochemical parameters, and insulin resistance. Methods Real‐time PCR was done to evaluate the transcript levels of the above‐mentioned genes in VAT and SAT from all participants. Results Using principal component analysis (PCA) results, two significant principal components were identified for adipogenic and lipogenic genes in SAT (SPC1 and SPC2) and VAT (VPC1 and VPC2). SPC1 was characterized by relatively high transcript levels of SREBP1c, PPARγ, FAS, and ACC. However, the second pattern (SPC2) was associated with C/EBPα and LXR α mRNA expression. VPC1 was characterized by transcript levels of SREBP1c, FAS, and ACC. However, the VPC2 was characterized by transcript levels of C/EBPα, LXR α, and PPARγ. Pearson’s correlation analysis showed that unlike SPC2, which disclosed an inverse correlation with body mass index, waist and hip circumference, waist to height ratio, visceral adiposity index, HOMA-IR, conicity index, lipid accumulation product, and weight-adjusted waist index, the VPC1 was positively correlated with above-mentioned obesity indices. Conclusion This study provided valuable data on multiple patterns for adipogenic and lipogenic genes in adipose tissues in association with a variety of anthropometric indices in obese subjects predicting adipose tissue dysfunction and lipid accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.