Abstract. This paper describes a single precision floating point division based on Newton-Raphson computational division algorithm. The Newton-Raphson computational algorithm is implemented using 32-bit floating point multiplier and subtractor. The salient feature of this proposed design is that the module for computing mantissa in 32-floating point multiplier is designed using a 24-bit Vedic multiplication (Urdhva-triyakbhyam-sutra) technique. 32-bit floating point multiplier, designed using Vedic multiplication technique, yields a higher computational speed, hence, is efficiently used in floating point divider. Another important feature is the efficient use of device utilization parameters and reduced power consumption. An advantage of the Newton-Raphson algorithm is the higher versatility and precision. For representing 32-bit floating point numbers, IEEE 754 standard format is used. ISim simulator is used for simulation. The proposed floating point divider is designed using Verilog Hardware Description Language (HDL) and is verified on Xilinx Spartan 6 SP605 Evaluation Platform FPGA.
<span>This paper presents different computational algorithms to implement single precision floating point division on field programmable gate arrays (FPGA). Fast division computation algorithms can apply to all division cases by which an efficient result will be obtained in terms of delay time and power consumption. 24-bit Vedic multiplication (Urdhva-Triyakbhyam-sutra) technique enhances the computational speed of the mantissa module and this module is used to design a 32-bit floating point multiplier which is the crucial feature of this proposed design, which yields a higher computational speed and reduced delay time. The proposed design of floating-point divider using fast computational algorithms synthesized using Verilog hardware description language has a 32-bit floating point multiplier module unit and a 32-bit floating point subtractor module unit. Xilinx Spartan 6 SP605 evaluation platform is used to verify this proposed design on FPGA. Synthesis results provide the device utilization and propagation delay parameters for the proposed design and a comparative study is done with previous work. Input to the divider is provided in IEEE 754 32-bit formats.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.