Media audiences that represent a significant part of a county's public may hold opinions on mediagenerated definitions of social problems different from those of media professionals. The proliferation of user-generated content makes such opinions available, but simultaneously demands new automatic methods of analysis that media scholars still have to master. In this paper, we show how topics regarded as problematic by media consumers may be revealed and analyzed by social scientists with a combination of data mining methods. Our dataset consists of 33,877 news items and 258,121 comments from a sample of regional newspapers. With a number of new, but simple indices we find that issue salience in media texts and its popularity with audience diverge. We conclude that our approach can help communication scholars effectively detect both popular and negatively perceived topics as good proxies of social problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.