This study was designed to examine the potential antitumor effect of some macrolides: clarithromycin, azithromycin, and erythromycin on chemically induced hepatocellular carcinoma (HCC) in rats and on human hepatoma cells (HepG2) as well. The possible underlying antiapoptotic mechanisms were investigated. Antiproliferative activity was assessed in HepG2 using Sulforhodamine-B staining method. In vivo, HCC was induced in rats by initiation-selection-promotion protocol using diethylnitrosamine (200 mg/kg, single i.p. injection)/2-acetylaminofluorene (0.03% w/w supplemented-diet for 2 weeks)/carbon tetrachloride (2 ml/kg diluted in corn oil 1:1, single intra-gastric dose)/phenobarbitone sodium (0.05% w/w supplemented-diet for 28 weeks). Macrolides were administered once daily starting from the 3rd week until the 17th week at a dose of 100 mg/kg in the current 33-week study period. Clarithromycin showed a higher efficacy in the suppression of HepG2 proliferation with lower IC50 value than doxorubicin. In vivo, chemically-induced HCC rat model proved that clarithromycin suppressed HCC via induction of apoptosis through up-regulation of both extrinsic/intrinsic apoptotic pathways' proteins (TNFR1, cleaved caspase-3, and Bax with an increased Bax/Bcl-2 ratio) along with MMP-9 normalization. Similarly, azithromycin demonstrated antitumorigenic effect through both apoptotic pathways, however, to a lesser extent compared to clarithromycin. Moreover, azithromycin suppressed the proliferation of HepG2, however, at a higher IC50 than doxorubicin. Surprisingly, erythromycin increased HepG2 proliferation in vitro, along with worsened tumorigenic effect of the carcinogenic agents in the in vivo study with ineffective apoptotic outcome. Some macrolides represent potential antitumor agents; however, this evident anticancer activity is an individual effect rather than a group effect and involves modulation of both intrinsic and extrinsic apoptotic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.