We have shown a novel mechanism of Akt-mediated regulation of the CDK inhibitor p27(kip1). Blockade of HER2/neu in tumor cells inhibits Akt kinase activity and upregulates nuclear levels of the CDK inhibitor (Kip1). Recombinant Akt and Akt precipitated from tumor cells phosphorylated wild-type p27 in vitro. p27 contains an Akt consensus RXRXXT(157)D within its nuclear localization motif. Active (myristoylated) Akt phosphorylated wild-type p27 in vivo but was unable to phosphorylate a T157A-p27 mutant. Wild-type p27 localized in the cytosol and nucleus, whereas T157A-p27 localized exclusively in the nucleus and was resistant to nuclear exclusion by Akt. T157A-p27 was more effective than wild-type p27 in inhibiting cyclin E/CDK2 activity and cell proliferation; these effects were not rescued by active Akt. Expression of Ser(473) phospho Akt in primary human breast cancers statistically correlated with expression of p27 in tumor cytosol. These data indicate that Akt may contribute to tumor-cell proliferation by phosphorylation and cytosolic retention of p27, thus relieving CDK2 from p27-induced inhibition.
Crk-associated substrate (p130 CAS or CAS) is a major integrin-associated Src substrate that undergoes tyrosine phosphorylation at multiple YXXP motifs in its substrate domain (SD) to create docking sites for SH2-containing signaling effectors. Notably, recruitment of Crk adaptor proteins to the CAS SD sites is implicated in promoting cell migration. However, it is unclear which or how many of the 15 CAS SD YXXP tyrosines are critically involved. To gain a better understanding of CAS SD function, we assessed the signaling capacity of individual YXXP motifs. Using site-directed mutagenesis combined with tryptic phosphopeptide mapping, we determined that the ten tyrosines in YXXP motifs 6 -15 are the major sites of CAS SD phosphorylation by Src. Phosphopeptide binding assays showed that all of these sites are capable of binding the Crk SH2 domain. To evaluate the requirement for CAS YXXP sites in stimulating cell migration, a series of phenylalanine substitution variants were expressed in CAS ؊/؊ mouse embryo fibroblasts. CAS expression enhanced the rate of cell migration into a monolayer wound in a manner dependent on the major sites of Src phosphorylation. Effective wound healing was achieved by CAS variants containing as few as four of the major sites, indicating sufficiency of partial SD signaling function in this cell migration response.
The activity of nitric oxide synthase (NOS) has recently been shown to increase transiently but dramatically in chick embryonic myoblasts that are competent for fusion and that NO acts as a messenger for the cell fusion. Here we show that the rise in NOS activity is tightly correlated with an increase in NOS protein level, and its synthesis is under transcriptional control. In addition, a partial cDNA sequence of NOS obtained by reverse transcription PCR on total RNA from chick myoblasts was found to be identical with that of the inducible type of NOS (iNOS) from chick macrophage. Thus chick myoblast NOS must belong to the family of iNOS. Consistently, pyrrolidine dithiocarbamate, a potent inhibitor of nuclear factor kappaB (NF-kappaB), prevented the expression of myoblast NOS. Furthermore the antioxidant also strongly inhibited cell fusion, and its inhibitory effect was reversed by treatment with sodium nitroprusside, an NO-generating agent. In addition, nuclear extracts obtained from myoblasts that were competent for fusion, but not those from proliferating cells or from fully differentiated myotubes, were capable of binding to the consensus NF-kappaB site in the promoter region of the gene encoding iNOS. These results suggest that NF-kappaB-dependent expression of NOS is an important step in membrane fusion of chick embryonic myoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.