Aquaponics are efficient systems that associate aquatic organisms’ production and plants by recirculating water and nutrients between aquaculture and hydroponic tanks. In this study, we characterised the bacterial communities in the freshwater aquaponics system that can mineralise polysaccharides and phytate by producing carbohydrate-degrading enzymes and phytases, by 16S rRNA gene sequencing and in vitro culture techniques. Around 20% of the operational taxonomic units (zOTUs) identified were previously reported to carry fibre-degrading enzyme putative genes, namely β-glucanase (1%), xylanase (5%), or cellulases (17%). Ten % of the zOTUs were previously reported to carry putative genes of phytases with different catalytic mechanisms, namely β-propeller (6%), histidine acid phytases (3%), and protein tyrosine phytase (<1%). Thirty-eight morphologically different bacteria were isolated from biofilms accumulated in fish and plant compartments, and identified to belong to the Bacilli class. Among these, 7 could produce xylanase, 8 produced β-glucanase, 14 produced cellulase, and 11 isolates could secrete amylases. In addition, Staphylococcus sp. and Rossellomorea sp. could produce consistent extracellular phytate-degrading activity. The PCR amplification of β-propeller genes both in environmental samples and in the isolates obtained showed that this is the most ecologically relevant phytase type in the aquaponics systems used. In summary, the aquaponics system is abundant with bacteria carrying enzymes responsible for plant-nutrient mineralisation.
Aquaponics are efficient systems that associate aquatic organisms’ production and plants by recirculating water and nutrients between aquaculture and hydroponic tanks. In this study, we have characterised the bacterial communities in the fresh water aquaponics system that can mineralise polysaccharides and phytate by producing carbohydrate degrading enzymes and phytases, by 16S rRNA gene sequencing and in vitro culture techniques. Around 20% of the operational taxonomic units (OTUs) identified were previously reported to carry fibre-degrading enzymes putative genes, namely β-glucanase (1%), xylanase (5%) or cellulases (17%). Ten % of the OTUs were previously reported to carry putative genes of phytases with different catalytic mechanisms, namely β-propeller (6%), histidine acid phytases (3%) and protein tyrosine phytase (&lt;1%). Thirty-eight morphologically different bacteria were isolated from biofilms accumulated in fish and plant compartments, and identified to belong to the Bacilli class. Among these, seven could produce xylanase, 8 produced β-glucanase, 14 produced cellulase, and 11 isolates could secrete amylases. In addition, Staphylococcus sp. and Rossellomorea sp. could produce consistent extracellular phytate-degrading activity. The PCR amplification of β-propeller genes both in environmental samples and in the isolates obtained showed that this is the most ecologically relevant phytase type in the aquaponics systems used. In summary, the aquaponics system is abundant with bacteria carrying enzymes responsible for plant-nutrient mineralisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.