Advanced surface modification approaches of biomaterials alongside the advent of sophisticated analytical techniques have provided a great opportunity to understand how the physicochemical characteristics of materials determine cellÀsurface dynamics at molecular and atomic scale. However, there are still many contradictory reports, which are mainly due to inadequate information about the role of the two parameters of surface chemistry and structure and their synergistic effect as an adequate predictor of biological performance. Here, surface parameters were altered by grafting of poly ethylene glycol (PEG) on polyurethane (PU) surfaces through a superhydrophilic modification method. In this study, surface modification of PU films by PEG thin layer via grafting technique and TiO2 nanoparticle entrapment in the brush polymers was investigated. The surface modification led to a reduction in protein adsorption and bacterial attachment by 8.7 times and 71% respectively with no cytotoxicity effect on HeLa cells. It was also observed that when PU surface became superhydrophilic the bacterial adhesion becomes independent of bacterium type. In general, it was observed that the impact of topographical changes on the biocompatibility and biofilm formation becomes significantly more profound than that of the surface chemistry alteration.
There have been developments in the optimization of polyether sulfone (PES) membranes, to provide antifouling and mechanically stable surfaces which are vital to water purification applications. There is a variety of approaches to prepare nanocomposite PES membranes. However, an optimized condition for making such membranes is in high demand. Using experimental design and statistical analysis (one-half fractional factorial design), this study investigates the effect of different parameters featured in the fabrication of membranes, as well as on the performance of a nanocomposite PES/TiO2 membrane. The optimized parameters obtained in this study are: exposure time of 60 s, immersion time above 10 h, glycerol time of 4 h, and a nonsolvent volumetric ratio (isopropanol/water) of 30/70 for PES and dimethylacetamide (PES-DMAc) membrane and 70/30 for PES and N-methyl-2-pyrrolidone (PES-NMP) membrane. A comparison of the contributory factors for different templating agents along with a nanocomposite membrane control, revealed that F127 triblock copolymer resulted in an excellent antifouling membrane with a higher bovine serum albumin rejection and flux recovery of 83.33%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.