Rhizosphere dwelling bacteria can increase plant resistance to biotic and abiotic stresses, and they promote plant growth through various mechanisms. In this study, three bioassays were conducted including the following: (a) screening for effective bacterial isolates in the suppression of broomrape, (b) evaluating induced systemic resistance against broomrape and (c) comparing the selected bacterium isolate with plant chemical inducers. Fifteen plant growth‐promoting rhizobacteria (PGPR) were examined to assess their biocontrol potential against Egyptian broomrape (Phelipanche aegyptiaca). Ten isolates significantly reduced the broomrape biomass compared to the control. The Lysinibacillus boronitolerans B124 reduced the dry weight of broomrape plants from 2.15 g in control to 0.45 g. Bacillus megaterium B6 was the best isolate in reducing the number of broomrape tubercles. In addition, the activity of three selected bacterial isolates was investigated in induced systemic resistance to broomrape by split‐root method. The Bacillus pumilus INR7 reduced the number of visible broomrape tubercles by 90%, and B. megaterium B71 and L. boronitolerans B124 were the next two in rank. Compared with the control, L. boronitolerans B124 reduced the dry weight of broomrape from 1.49 g in control to 0.39 g. In a subsequent experiment, L. boronitolerans B124 was evaluated along with some resistance‐inducing volatile compounds. Lysinibacillus boronitolerans B124 decreased the number of broomrapes by 87% on average, while the lowest dry weight of broomrape was observed in methyl jasmonate treatment. In conclusion, PGPR have considerable potential to be used in the integrated management of broomrape. It is also possible to use a mixture of rhizobacteria and defence inducers, such as biogenic volatiles as a promising approach in the management of this noxious parasitic weed.
In November 2018 severe downy mildew infection was observed on summer savory plants in Kermanshah Province, Iran. Leaves on infected plants displayed chlorosis-browning on the upper surfaces and abundant dark gray-brown sporulation of the asexual morph on the lower surfaces. Based on the morphological characteristics and molecular analyses using ITS-1 and ITS-4, the species was identified as Peronospora saturejae-hortensis. The nucleotide sequence of this pathogen had a very high (99.9%) identity with a previously reported sequence of P. saturejae-hortensis from Germany. The possibility of infection on other native Satureja species in Iran is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.